Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    0, Vol. 0 Issue (0) : 44-56    https://doi.org/10.1007/s12200-014-0439-x
REVIEW ARTICLE
Tailoring electromagnetic responses in terahertz superconducting metamaterials
Xiaoling ZHANG,Jianqiang GU(),Jiaguang HAN(),Weili ZHANG
Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University, and the Key Laboratory of Optoelectronics Information and Technology (Ministry of Education), Tianjin 300072, China
 Download: PDF(1922 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Superconducting terahertz metamaterials have attracted significant interest due to low loss, efficient resonance switching and large-range frequency tunability. The super conductivity in the metamaterials dramatically reduces ohmic loss and absorption to levels suitable for novel devices over a broad range of electromagnetic spectrum. Most metamaterials utilize subwavelength-scale split-ring resonators as unit building blocks, which are proved to support fundamental inductive-capacitive resonance, to achieve unique resonance performance. We presented a review of terahertz superconducting metamaterials and their implementation in multifunctional devices. We began with the recent development of superconducting metamaterials and their potential applications in controlling and manipulating terahertz waves. Then we explored the tuning behaviors of resonance properties in several typical, actively controllable metamaterials through integrating active components. Finally, the ultrafast dynamic nonlinear response to high intensity terahertz field in the superconducting metamaterials was presented.

Keywords superconducting metamaterial      terahertz, active metamaterial     
Corresponding Author(s): Jianqiang GU,Jiaguang HAN   
Online First Date: 11 August 2014    Issue Date: 13 February 2015
 Cite this article:   
Xiaoling ZHANG,Jianqiang GU,Jiaguang HAN, et al. Tailoring electromagnetic responses in terahertz superconducting metamaterials[J]. Front. Optoelectron., 0, 0(0): 44-56.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-014-0439-x
https://academic.hep.com.cn/foe/EN/Y0/V0/I0/44
Fig.1  Microscopic image of YBCO SRR with structure parameters: W = 8 μm. G = 5 μm, L = 32 μm and P = 52 μm [16]
Fig.2  Measured amplitude transmission spectra of YBCO MM at different temperatures [16]
Fig.3  Amplitude transmission spectra at 6 and 26 K for two resonance modes at (a) 0.132 THz and (b) 0.418 THz, respectively. The solid lines indicate the fitting results to the experiment data. Inset: Microscopic image of MM sample with the incident electric field parallel to the gap [21]
Fig.4  (a) Micrograph of a representative eSRR. The light and black areas are YBCO film and the LAO substrate, respectively; (b) dimensions of eSRR are g = 4 μm, w = 36 μm, l = 36 μm, and p = 46 μm [24]
Fig.5  Terahertz transmission spectra of a 180-nm-thick YBCO eSRR array at various temperatures [24]
Fig.6  (a) Minimal transmission amplitude and (b) corresponding resonance frequency at various temperatures, from experiments, numerical calculations, and theoretical simulations. The inset in (a) presents both the real and imaginary parts of the complex conductivity of the unpatterned 180-nm-thick YBCO film at 0.6 THz [24]
Fig.7  Terahertz transmission of 100-nm-thick YBCO MMs exposed to near infrared femtosecond pump. The terahertz peak transmission is shown as a function of pump-probe time delay at 20 K with photoexcitation power of 50 and 300 mW. At Position I, the terahertz probe pulse arrives about 5 ps earlier than the optical pulse. It has lower transmission due to strong resonant response of the metamateria. Positions II, III and IV indicate various pump-probe time delays between the terahertz pulse and optical excitation. Inset: microscopic image of a 100-nm-thick YBCO MM unit cell. Besides, the incident terahertz pulse has the electric field polarization along the arm of SRR for all measurements [31]
Fig.8  Transmitted terahertz amplitude spectra of YBCO MMs as a function of various photoexcitation powers. The transmission curves shown in (a)–(d) are corresponding to the respective pump-probe time delay positions I – IV [31]
Fig.9  Transmission vs frequency (solid lines) at 6 K with various H dc = 0, 0.1, 0.3, 0.5 and 0.7 T (started from bottom) at (a) 0.132 THz and (b) 0.418 THz. The square symbols represent the transmission spectra at 6 K with H dc = 1 T and the solid triangle symbols represent the transmission spectra at 26 K with zero H dc [ 21]
Fig.10  Microscopic images of (a) subwavelength YBCO hole array on a sapphire substrate with a periodicity of P = 100 μm and (b) schematic diagram of an SRR unit cell with structural parameters [36]
Fig.11  Measured amplitude transmission spectra of the YBCO MM at 297, 183, 133, 86, and 51.4 K at normal incidence [36]
Fig.12  (a) Schematic of the three-level EIT-like MM. The geometric parameters are p = 120 μm, l = 64 μm, W = 48 μm, s = 4 μm, t1 = t2 = 8 μm, g = 15 μm, d = 90 μm. The incident direction and the polarization of the electric field was also indicated; (b) transmission spectra for the three-level EIT-like MM at various temperatures; (c) calculated group delay vs frequency at various temperatures [39]
Fig.13  Schematic of the SC MM unit cell with structural parameters: g= t= 5 μm, w= 10 μm, a= 50 μm, and a periodicity of P= 60 μm, where E and H represent the electric field and magnetic field, respectively [40]
Fig.14  Measured amplitude transmission spectra for the SC MM with various incident terahertz field strengths at 4.5 K [40]
Fig.15  Real (a) and imaginary (b) conductivities of 50-nm-thick NbN thin film with different incident terahertz field strengths [40]
Fig.16  Effective surface reactance X s , e f f and resistance R s , e f f of the SC NbN film located at resonance frequency 0.45 THz with various incident terahertz field intensity from measured complex conductivity at 4.5 K [ 40]
1 Pendry J B. Negative refraction makes a perfect lens. Physical Review Letters, 2000, 85(18): 3966–3969
https://doi.org/10.1103/PhysRevLett.85.3966 pmid: 11041972
2 Fang N, Lee H, Sun C, Zhang X. Sub-diffraction-limited optical imaging with a silver superlens. Science, 2005, 308(5721): 534–537
https://doi.org/10.1126/science.1108759 pmid: 15845849
3 Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction. Science, 2001, 292(5514): 77–79
https://doi.org/10.1126/science.1058847 pmid: 11292865
4 Zhang S, Genov D A, Wang Y, Liu M, Zhang X. Plasmon-induced transparency in metamaterials. Physical Review Letters, 2008, 101(4): 047401
https://doi.org/10.1103/PhysRevLett.101.047401 pmid: 18764363
5 Gansel J K, Thiel M, Rill M S, Decker M, Bade K, Saile V, von Freymann G, Linden S, Wegener M. Gold helix photonic metamaterial as broadband circular polarizer. Science, 2009, 325(5947): 1513–1515
https://doi.org/10.1126/science.1177031 pmid: 19696310
6 Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R. Metamaterial electromagnetic cloak at microwave frequencies. Science, 2006, 314(5801): 977–980
https://doi.org/10.1126/science.1133628 pmid: 17053110
7 Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields. Science, 2006, 312(5781): 1780–1782
https://doi.org/10.1126/science.1125907 pmid: 16728597
8 Zheludev N I. Applied physics. The road ahead for metamaterials. Science, 2010, 328(5978): 582–583
https://doi.org/10.1126/science.1186756 pmid: 20431006
9 Ricci M, Orloff N, Anlage S M. Superconducting metamaterials. Applied Physics Letters, 2005, 87(3): 034102
https://doi.org/10.1063/1.1996844
10 Fedotov V A, Tsiatmas A, Shi J H, Buckingham R, de Groot P, Chen Y, Wang S, Zheludev N I. Temperature control of Fano resonances and transmission in superconducting metamaterials. Optics Express, 2010, 18(9): 9015–9019
https://doi.org/10.1364/OE.18.009015 pmid: 20588747
11 Tonouchi M. Cutting-edge terahertz technology. Nature Photonics, 2007, 1(2): 97–105
https://doi.org/10.1038/nphoton.2007.3
12 Ferguson B, Zhang X C. Materials for terahertz science and technology. Nature Materials, 2002, 1(1): 26–33
https://doi.org/10.1038/nmat708 pmid: 12618844
13 O’Hara J F, Singh R, Brener I, Smirnova E, Han J, Taylor A J, Zhang W. Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations. Optics Express, 2008, 16(3): 1786–1795
https://doi.org/10.1364/OE.16.001786 pmid: 18542258
14 Debus C, Bolivar P H. Frequency selective surfaces for high sensitivity terahertz sensing. Applied Physics Letters, 2007, 91(18): 184102
https://doi.org/10.1063/1.2805016
15 Kleine-Ostmann T, Nagatsuma T. A review on terahertz communications research. Journal of Infrared, Millimeter, and Terahertz Waves, 2011, 32(2): 143–171
https://doi.org/10.1007/s10762-010-9758-1
16 Gu J, Singh R, Tian Z, Cao W, Xing Q, He M, Zhang J W, Han J, Chen H T, Zhang W. Terahertz superconductor metamaterial. Applied Physics Letters, 2010, 97(7): 071102
https://doi.org/10.1063/1.3479909
17 Singh R, Tian Z, Han J, Rockstuhl C, Gu J, Zhang W. Cryogenic temperatures as a path toward high-Q terahertz metamaterials. Applied Physics Letters, 2010, 96(7): 071114
https://doi.org/10.1063/1.3313941
18 Singh R, Smirnova E, Taylor A J, O’Hara J F, Zhang W. Optically thin terahertz metamaterials. Optics Express, 2008, 16(9): 6537–6543
https://doi.org/10.1364/OE.16.006537 pmid: 18545357
19 Singh R, Azad A K, O’Hara J F, Taylor A J, Zhang W. Effect of metal permittivity on resonant properties of terahertz metamaterials. Optics Letters, 2008, 33(13): 1506–1508
https://doi.org/10.1364/OL.33.001506 pmid: 18594680
20 Wilke I, Khazan M, Rieck C T, Kuzel P, Kaiser T, Jaekel C, Kurz H. Terahertz surface resistance of high temperature superconducting thin films. Journal of Applied Physics, 2000, 87(6): 2984–2988
https://doi.org/10.1063/1.372287
21 Jin B, Zhang C, Engelbrecht S, Pimenov A, Wu J, Xu Q, Cao C, Chen J, Xu W, Kang L, Wu P. Low loss and magnetic field-tunable superconducting terahertz metamaterial. Optics Express, 2010, 18(16): 17504–17509
https://doi.org/10.1364/OE.18.017504 pmid: 20721135
22 Azad A K, Dai J, Zhang W. Transmission properties of terahertz pulses through subwavelength double split-ring resonators. Optics Letters, 2006, 31(5): 634–636
https://doi.org/10.1364/OL.31.000634 pmid: 16570422
23 Pendry J B, Holden A J, Robbins D J, Stewart W J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2075–2084
24 Chen H T, Yang H, Singh R, O’Hara J F, Azad A K, Trugman S A, Jia Q X, Taylor A J. Tuning the resonance in high-temperature superconducting terahertz metamaterials. Physical Review Letters, 2010, 105(24): 247402
https://doi.org/10.1103/PhysRevLett.105.247402 pmid: 21231556
25 London F, London H. The electromagnetic equations of the supraconductor. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1935, 149(866): 71–88
https://doi.org/10.1098/rspa.1935.0048
26 Ricci M C, Anlage S M. Single superconducting split-ring resonator electrodynamics. Applied Physics Letters, 2006, 88(26): 264102
https://doi.org/10.1063/1.2216931
27 Zhang C H, Wu J B, Jin B B, Ji Z M, Kang L, Xu W W, Chen J, Tonouchi M, Wu P H. Low-loss terahertz metamaterial from superconducting niobium nitride films. Optics Express, 2012, 20(1): 42–47
https://doi.org/10.1364/OE.20.000042 pmid: 22274327
28 Wu J, Jin B, Xue Y, Zhang C, Dai H, Zhang L, Cao C, Kang L, Xu W, Chen J, Wu P. Tuning of superconducting niobium nitride terahertz metamaterials. Optics Express, 2011, 19(13): 12021–12026
https://doi.org/10.1364/OE.19.012021 pmid: 21716437
29 Kang L, Jin B B, Liu X Y, Jia X Q, Chen J, Ji Z M, Xu W W, Wu P H, Mi S B, Pimenov A, Wu Y J, Wang B G. Suppression of superconductivity in epitaxial NbN ultrathin films. Journal of Applied Physics, 2011, 109(3): 033908
https://doi.org/10.1063/1.3518037
30 Purcell E M, Morin D J. Electricity and Magnetism. Cambridge: Cambridge University Press, 2013
31 Singh R, Xiong J, Azad A K, Yang H, Trugman S A, Jia Q X, Taylor A J, Chen H T. Optical tuning and ultrafast dynamics of high-temperature superconducting terahertz metamaterials. Nanophotonics, 2012, 1(1): 117–123
32 Coffey M W, Clem J R. Unified theory of effects of vortex pinning and flux creep upon the rf surface impedance of type-II superconductors. Physical Review Letters, 1991, 67(3): 386–389
https://doi.org/10.1103/PhysRevLett.67.386 pmid: 10044875
33 Ricci M C, Xu H, Prozorov R, Zhuravel A P, Ustinov A V, Anlage S M. Tunability of superconducting metamaterials. IEEE Transactions on Applied Superconductivity, 2007 17(2): 918–921
34 Han J, Lakhtakia A, Tian Z, Lu X, Zhang W. Magnetic and magnetothermal tunabilities of subwavelength-hole arrays in a semiconductor sheet. Optics Letters, 2009, 34(9): 1465–1467
https://doi.org/10.1364/OL.34.001465 pmid: 19412307
35 Chen H T, Lu H, Azad A K, Averitt R D, Gossard A C, Trugman S A, O’Hara J F, Taylor A J. Electronic control of extraordinary terahertz transmission through subwavelength metal hole arrays. Optics Express, 2008, 16(11): 7641–7648
https://doi.org/10.1364/OE.16.007641 pmid: 18545471
36 Tian Z, Singh R, Han J, Gu J, Xing Q, Wu J, Zhang W. Terahertz superconducting plasmonic hole array. Optics Letters, 2010, 35(21): 3586–3588
https://doi.org/10.1364/OL.35.003586 pmid: 21042358
37 Wu J, Dai H, Wang H, Jin B, Jia T, Zhang C, Cao C, Chen J, Kang L, Xu W, Wu P. Extraordinary terahertz transmission in superconducting subwavelength hole array. Optics Express, 2011, 19(2): 1101–1106
https://doi.org/10.1364/OE.19.001101 pmid: 21263649
38 Fedotov V A, Tsiatmas A, Shi J H, Buckingham R, de Groot P, Chen Y, Wang S, Zheludev N I. Temperature control of Fano resonances and transmission in superconducting metamaterials. Optics Express, 2010, 18(9): 9015–9019
https://doi.org/10.1364/OE.18.009015 pmid: 20588747
39 Wu J, Jin B, Wan J, Liang L, Zhang Y, Jia T, Cao C, Kang L, Xu W, Chen J, Wu P. Superconducting terahertz metamaterials mimicking electromagnetically induced transparency. Applied Physics Letters, 2011, 99(16): 161113
https://doi.org/10.1063/1.3653242
40 Zhang C, Jin B, Han J, Kawayama I, Murakami H, Wu J, Kang L, Chen J, Wu P, Tonouchi M. Terahertz nonlinear superconducting metamaterials. Applied Physics Letters, 2013, 102(8): 081121
https://doi.org/10.1063/1.4794077
41 Zhang C, Jin B, Han J, Kawayama I, Murakami H, Jia X, Liang L, Kang L, Chen J, Wu P, Tonouchi M. Nonlinear response of superconducting NbN thin film and NbN metamaterial induced by intense terahertz pulses. New Journal of Physics, 2013, 15(5): 055017
https://doi.org/10.1088/1367-2630/15/5/055017
42 Grady N K, Perkins B G Jr, Hwang H Y, Brandt N C, Torchinsky D, Singh R, Yan L, Trugman D, Trugman S A, Jia Q X, Taylor A J, Nelson K A, Chen H T. Nonlinear high-temperature superconducting terahertz metamaterials. New Journal of Physics, 2013, 15(10): 105016
https://doi.org/10.1088/1367-2630/15/10/105016
43 Matsunaga R, Shimano R. Nonequilibrium BCS state dynamics induced by intense terahertz pulses in a superconducting NbN film. Physical Review Letters, 2012, 109(18): 187002
https://doi.org/10.1103/PhysRevLett.109.187002 pmid: 23215317
44 Schurig D, Mock J J, Smith D R. Electric-field-coupled resonators for negative permittivity metamaterials. Applied Physics Letters, 2006, 88(4): 041109
https://doi.org/10.1063/1.2166681
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed