Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2015, Vol. 8 Issue (1) : 73-80    https://doi.org/10.1007/s12200-014-0443-1
RESEARCH ARTICLE
Simultaneous generation of nonlinear optical harmonics and terahertz radiation in air: polarization discrimination of various nonlinear contributions
Mikhail ESAULKOV(),Olga KOSAREVA,Vladimir MAKAROV,Nikolay PANOV,Alexander SHKURINOV
Department of Physics and International Laser Center, Lomonosov Moscow State University, Leninskie gory, Moscow 119992, Russia
 Download: PDF(721 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, we experimentally observed generation of the second and the third optical harmonics and the broadband terahertz radiation in the course of 800 nm 120 fs pulse in atmospheric air. The analysis of their polarization properties revealed unity of their nonlinear optical nature. Taking into account only the third-order nonlinear response of the neutral molecules of air, we analytically described the newly generated elliptically polarized 3d harmonic, the linear polarization of terahertz radiation and the stability of terahertz energy yield for the initial circularly polarized ω pump pulse.

Keywords terahertz      polarization      harmonics      nonlinearity     
Corresponding Author(s): Mikhail ESAULKOV   
Online First Date: 31 July 2014    Issue Date: 13 February 2015
 Cite this article:   
Olga KOSAREVA,Vladimir MAKAROV,Nikolay PANOV, et al. Simultaneous generation of nonlinear optical harmonics and terahertz radiation in air: polarization discrimination of various nonlinear contributions[J]. Front. Optoelectron., 2015, 8(1): 73-80.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-014-0443-1
https://academic.hep.com.cn/foe/EN/Y2015/V8/I1/73
Fig.1  Scheme of experimental setup. The dielectric mirror 1 (DM1) splits the input optical beam with 50% reflection and 50% transmission. The second harmonic pulse is generated in beta barium borate crystal (BBO) and delayed with a delay line (DL). The wave plates (WP1 and WP2) were used to control the polarization state of the beams, the mirror (M1) reflected second harmonic radiation and transmitted the fundamental radiation, the Glan prism (GP) cleaned the linear polarization of the second harmonic radiation. The dielectric mirror 2 (DM2) recombined the two beams. Lenses (L1 and L2) were used to focus and collimate the optical radiation, the photodiode (PD) detected the intensity of second harmonic radiation. Silicon filter (Si) was used to block the optical radiation and transmit terahertz radiation. The off-axis parabolic mirrors (PM1 and PM2) guided the terahertz beam into the entrance window of a Golay cell detector
Fig.2  Measured intensity of the 2ω radiation polarized orthogonally to the initial 2ω polarization vs angle ψ between electric fields of ω and 2ω pulse at zero delay between pulses (green circles). The solid line shows the dependence of the 2 ω energy at the crossed analyzer in accordance with Eq. (4) (see Section 4). Black squares and red circles show the dependence of W y 2 ω vs the angle ψfor 4.0 and 2.8 ps delay between ωand 2ω pulse (the moments of realignment of N2 and O2 molecules respectively).
Fig.3  Energy of y- (a) and x- (b) polarized terahertz radiation vs the angle ψ between electric fields of ω and 2ω pulse. The solid curves show the dependences of the x- and y-polarized terahertz energy in accordance with the Eqs. (7) and (8) (see Section 4)
Fig.4  Polarization of the third harmonic radiation (black squares) as compared with the polarization if the initial ω radiation (red circles) and the linear 2ω polarization direction (blue line). Orange solid line shows the simulated 3ω polarization (Eqs. (10) and (11))
Fig.5  Energy of subsequent terahertz pulses generated by circularly polarized ω beam and linearly polarized 2ω beam in case of no terahertz analyzer (a) and terahertz wire-grid analyzer (b) present in the collimated terahertz beam
1 Shen Y R. Principles of Nonlinear Optics. New York: Wiley-Interscience, 1984, 575
2 Wynne J, Sorokin P. Optical mixing in atomic vapors. In: Shen Y R, ed. Nonlinear Infrared Generation. Berlin: Springer-Verlag. 1977, 159–214
3 Fedotov A, Koroteev N, Zheltikov A. Phase-matching effects in the generation of third and fifth harmonics of Nd:YAG-laser radiation in a low-temperature laser-produced plasma. Laser Physics, 1995, 5(4): 835–840
4 Cook D J, Hochstrasser R M. Intense terahertz pulses by four-wave rectification in air. Optics Letters, 2000, 25(16): 1210–1212
https://doi.org/10.1364/OL.25.001210 pmid: 18066171
5 Houard A, Liu Y, Prade B, Mysyrowicz A. Polarization analysis of terahertz radiation generated by four-wave mixing in air. Optics Letters, 2008, 33(11): 1195–1197
https://doi.org/10.1364/OL.33.001195 pmid: 18516171
6 Vvedenskii N V, Korytin A I, Kostin V A, Murzanev A A, Silaev A A, Stepanov A N. Two-color laser-plasma generation of terahertz radiation using a frequency-tunable half harmonic of a femtosecond pulse. Physical Review Letters, 2014, 112(5): 055004–055007
https://doi.org/10.1103/PhysRevLett.112.055004 pmid: 24580606
7 Borodin A V, Panov N A, Kosareva O G, Andreeva V A, Esaulkov M N, Makarov V A, Shkurinov A P, Chin S L, Zhang X C. Transformation of terahertz spectra emitted from dual-frequency femtosecond pulse interaction in gases. Optics Letters, 2013, 38(11): 1906–1908
https://doi.org/10.1364/OL.38.001906 pmid: 23722785
8 Kim K Y, Glownia J H, Taylor A J, Rodriguez G. Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields. Optics Express, 2007, 15(8): 4577–4584
https://doi.org/10.1364/OE.15.004577 pmid: 19532704
9 Théberge F, Chateauneuf M, Roy G, Mathieu P, Dubois J. Generation of tunable and broadband far-infrared laser pulses during two-color filamentation. Physical Review, 2010, 81(3): 033821
https://doi.org/10.1103/PhysRevA.81.033821
10 Dai J, Karpowicz N, Zhang X C. Coherent polarization control of terahertz waves generated from two-color laser-induced gas plasma. Physical Review Letters, 2009, 103(2): 023001
https://doi.org/10.1103/PhysRevLett.103.023001 pmid: 19659200
11 Kosareva O, Panov N, Makarov V, Perezhogin I, Marceau C, Chen Y, Yuan S, Wang T, Zeng H, Savel'ev A, Chin S L. Polarization rotation due to femtosecond filamentation in an atomic gas. Optics Letters, 2010, 35: 2904–2906
https://doi.org/10.1364/OL.35.002904
12 Morgen M, Price W, Hunziker L, Ludowise P, Blackwell M, Chen Y. Femtosecond Raman-induced polarization spectroscopy studies of rotational coherence in O2, N2 and CO2. Chemical Physics Letters, 1993, 209(1–2): 1–9
https://doi.org/10.1016/0009-2614(93)87192-6
13 Gryaznov G A, Makarov V A, Perezhogin I A, Potravkin N N. Modeling of nonlinear optical activity in propagation of ultrashort elliptically polarized laser pulses. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2014, 89(1): 013306–013316
https://doi.org/10.1103/PhysRevE.89.013306 pmid: 24580359
14 Panov N, Kosareva O, Savel'ev-Trofimov A, Uryupina D, Perezhogin I, Makarov V. Filamentation of femtosecond Gaussian pulses with close-to-linear or -circular elliptical polarization. Quantum Electronics, 2011, 41(2): 160–162
https://doi.org/10.1070/QE2011v041n02ABEH014423
[1] Md. Mostafa FARUK, Nazifa Tabassum KHAN, Shovasis Kumar BISWAS. Highly nonlinear bored core hexagonal photonic crystal fiber (BC-HPCF) with ultra-high negative dispersion for fiber optic transmission system[J]. Front. Optoelectron., 2020, 13(4): 433-440.
[2] Jiayu LI, Yijun XIE, Ping SUN. Edge detection on terahertz pulse imaging of dehydrated cutaneous malignant melanoma embedded in paraffin[J]. Front. Optoelectron., 2019, 12(3): 317-323.
[3] Rekha SAHA, Md. Mahbub HOSSAIN, Md. Ekhlasur RAHAMAN, Himadri Shekhar MONDAL. Design and analysis of high birefringence and nonlinearity with small confinement loss photonic crystal fiber[J]. Front. Optoelectron., 2019, 12(2): 165-173.
[4] Md. Nazmul HOSSEN, Md. FERDOUS, Kawsar AHMED, Md. Abdul KHALEK, Sujan CHAKMA, Bikash Kumar PAUL. Single polarization photonic crystal fiber filter based on surface plasmon resonance[J]. Front. Optoelectron., 2019, 12(2): 157-164.
[5] Kang LIU, Pingjie HUANG, Xi-Cheng ZHANG. Terahertz wave generation from ring-Airy beam induced plasmas and remote detection by terahertz-radiation-enhanced-emission-of-fluorescence: a review[J]. Front. Optoelectron., 2019, 12(2): 117-147.
[6] Peng LI, Sheng LIU, Yi ZHANG, Lei HAN, Dongjing WU, Huachao CHENG, Shuxia QI, Xuyue GUO, Jianlin ZHAO. Modulation of orbital angular momentum on the propagation dynamics of light fields[J]. Front. Optoelectron., 2019, 12(1): 69-87.
[7] Feidi XIANG, Kejia WANG, Zhengang YANG, Jinsong LIU, Shenglie WANG. A direct method to calculate second-order two-dimensional terahertz spectroscopy in frequency-domain based on classical theory[J]. Front. Optoelectron., 2018, 11(4): 413-418.
[8] Kejia WANG, Xinyang GU, Jinsong LIU, Zhengang YANG, Shenglie WANG. Proposal for CEP measurement based on terahertz air photonics[J]. Front. Optoelectron., 2018, 11(4): 407-412.
[9] Wenshu MA, Qi LI, Jianye LU, Liyu SUN. De-noising research on terahertz holographic reconstructed image based on weighted nuclear norm minimization method[J]. Front. Optoelectron., 2018, 11(3): 267-274.
[10] Chenghong WU, Xinyang MIAO, Kun ZHAO. Identifying PM2.5 samples collected in different environment by using terahertz time-domain spectroscopy[J]. Front. Optoelectron., 2018, 11(3): 256-260.
[11] Fabrizio BUCCHERI, Pingjie HUANG, Xi-Cheng ZHANG. Generation and detection of pulsed terahertz waves in gas: from elongated plasmas to microplasmas[J]. Front. Optoelectron., 2018, 11(3): 209-244.
[12] Leslie A. RUSCH, Sophie LAROCHELLE. Fiber transmission demonstrations in vector mode space division multiplexing[J]. Front. Optoelectron., 2018, 11(2): 155-162.
[13] Yong ZHANG, Yu HE, Qingming ZHU, Xinhong JIANG, Xuhan Guo, Ciyuan QIU, Yikai SU. On-chip silicon polarization and mode handling devices[J]. Front. Optoelectron., 2018, 11(1): 77-91.
[14] Weichong TANG, Zili ZHANG, Ke XIAO, Changchun ZHAO, Zhiyuan ZHENG. Terahertz frequency characterization of anisotropic structure of tourmaline[J]. Front. Optoelectron., 2017, 10(4): 409-413.
[15] Sergey SAVENKOV, Alexander V. PRIEZZHEV, Yevgen OBEREMOK, Sergey SHOLOM, Ivan KOLOMIETS. Characterization of irradiated nails in terms of depolarizing Mueller matrix decompositions[J]. Front. Optoelectron., 2017, 10(3): 308-316.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed