Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2014, Vol. 7 Issue (3) : 393-398    https://doi.org/10.1007/s12200-014-0444-0
RESEARCH ARTICLE
Broadband filter using multi-layer sub-wavelength high-contrast grating structure
Chuan WANG1,Xi ZHANG1,Xiaoying LIU1,*(),Yang YUE2,Yong MEI1,Peng LI1,Jia DU1
1. School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
2. Department of Electrical Engineering, University of Southern California, Los Angeles, CA 90089, USA
 Download: PDF(747 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper proposed a novel broadband filter using multi-layer sub-wavelength high-contrast grating (HCG) structure. This filter has wide bandwidth and good sideband suppression. We simulated and analyzed the effects of different numbers of layers and different grating indexes on filtering performance of the broadband filter. According to the simulated results, we designed a multi-layer HCG broadband filter, which has bandwidth of 843 nm and center wavelength of 1550 nm.

Keywords filter      sub-wavelength      high-contrast grating (HCG)     
Corresponding Author(s): Xiaoying LIU   
Online First Date: 13 August 2014    Issue Date: 09 September 2014
 Cite this article:   
Chuan WANG,Xi ZHANG,Xiaoying LIU, et al. Broadband filter using multi-layer sub-wavelength high-contrast grating structure[J]. Front. Optoelectron., 2014, 7(3): 393-398.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-014-0444-0
https://academic.hep.com.cn/foe/EN/Y2014/V7/I3/393
Fig.1  Schematic of multi-layer HCG broadband filter
grating refractive indexgrating period/nmduty cyclethickness/nm
2.04000.5245
2.54000.5204
3.04000.5173
Tab.1  HCGs parameters
Fig.2  Reflection spectrum of filter when the number of HCG layer is 2 (a), 3 (b), 4 (c) and 5 (d) respectively
Fig.3  Reflection spectrum of filter when HCG grating refractive index is 2.0 (a), 2.5 (b) and 3.0 (c) respectively
Fig.4  Reflection spectrum of filter with different HCG structures. (a) Low index at the top layer; (b) low index at the second layer; (c) low index at the third layer; (d) low index at the bottom layer
Fig.5  HCG structure with low grating refractive index at top and bottom layers
Fig.6  Reflection spectrum of sideband suppressed multi-layer HCG filter
Fig.7  Reflection spectrum of filter with different incident angles. (a) 0°; (b) 30°; (c) 60°
1 Magnusson R, Shokooh-Saremi M. Physical basis for wideband resonant reflectors. Optics Express, 2008, 16(5): 3456-3462
doi: 10.1364/OE.16.003456 pmid: 18542437
2 Gaylord T K, Baird W E, Moharam M G. Zero-reflectivity high spatial-frequency rectangular-groove dielectric surface-relief gratings. Applied Optics, 1986, 25(24): 4562-4567
doi: 10.1364/AO.25.004562 pmid: 18235823
3 Moharam M G, Gaylord T K. Rigorous coupled-wave analysis of planar-grating diffraction. JOSA A, 1981, 71(7): 811-818
4 Pesala B, Karagodsky V, Chang-Hasnain C. Ultra-compact low loss photonic components using high-contrast gratings. In: Proceedings of International Conference on Optics and Photonics, Chandigarh, India. 2009, 130-133
5 Mateus C F R, Huang M C Y, Deng Y F, Neureuther A R, Chang-Hasnain C J. Ultrabroadband mirror using low-index cladded subwavelength grating. Photonics Technology Letters, 2004, 16(2): 518-520
doi: 10.1109/LPT.2003.821258
6 Karagodsky V, Sedgwick F G, Chang-Hasnain C J. Theoretical analysis of subwavelength high contrast grating reflectors. Optics Express, 2010, 18(16): 16973-16988
doi: 10.1364/OE.18.016973 pmid: 20721086
7 Yue Y, Zhang L, Wang J, Xiao-Li Y Y, Shamee B, Karagodsky V, Sedgwick F G, Hofmann W, Beausoleil R G, Chang-Hasnain C J, Willner A E A. “Linear” high-contrast gratings hollow-core waveguide and its system level performance. In: Technical Digest of OFC’2010, San Diego, California, United States. 2010, 234-235
8 Zhou Y, Karagodsky V, Sedgwick F G, Chang-Hasnain C J. Ultra-low loss hollow-core waveguides using high-contrast gratings. In: Proceedings of Waveguides and Filter of CLEO’ 2009, Baltimore, Maryland, United States. 2009, 131-132
9 Fuchida A, Pesala B, Karagodsky V, Sedgwick F G, Koyama F, Chang-Hasnain C J. Zero-dispersion slow light in hollow waveguide with high-contrast grating. In: Proceedings of Novel Waveguides of CLEO’2010, San Jose, California, United States. 2010, 332-335
10 Mukesh K, Takahiro S, Fumio K, Chris C, Vadim K, Connie J C H. Novel 3D hollow optical waveguide with lateral and vertical periodicity for tunable photonic integrated circuits. In: Proceedings of 35th European Conference on Optical Communication, ECOC’ 2009, Vienna, Austria. 2009, 130-133
11 Zhou Y, Karagodsky V, Pesala B, Sedgwick F G, Chang-Hasnain C J. A novel ultra-low loss hollow-core waveguide using subwavelength high-contrast gratings. Optics Express, 2009, 17(3): 1508-1517
doi: 10.1364/OE.17.001508 pmid: 19188980
12 Kumar M, Koyama F, Chang-Hasnain C J. 2-D confinement and reduction of polarization dependence in hollow waveguide with high index contrast grating. In: Proceedings of International Quantum Electronics Conference, CLEO’ 2009. Baltimore, Maryland, United States. 2009
13 Pesala B, Karagodsky V, Koyama F, Chang-Hasnain C. Novel 2-D high-contrast grating hollow-core waveguide. In: Proceedings of Ultrafast Optics Applications of CLEO’ 2009. Baltimore, Maryland, United States. 2009, 50-52
14 Kumar M, Chase C, Karagodsky V, Sakaguchi T, Koyama F, Chang-Hasnain C J. Low birefringence and 2-D optical confinement of hollow waveguide with distributed Bragg reflector and high-index-contrast grating. Photonics Journal, IEEE, 2009, 1(2): 135-143
15 Yeh P, Yariv A, Hong C S. Electromagnetic propagation in periodic stratified media. I. General theory. Journal of the Optical Society of America, 1977, 67(4): 423-438
doi: 10.1364/JOSA.67.000423
16 Lalanne P, Hugonin J. High-order effective-medium theory of subwavelength gratings in classical mounting: application to volume holograms. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 1998, 15(7): 1843-1851
doi: 10.1364/JOSAA.15.001843
[1] Md. Nazmul HOSSEN, Md. FERDOUS, Kawsar AHMED, Md. Abdul KHALEK, Sujan CHAKMA, Bikash Kumar PAUL. Single polarization photonic crystal fiber filter based on surface plasmon resonance[J]. Front. Optoelectron., 2019, 12(2): 157-164.
[2] John C. CARTLEDGE. Performance of coherent optical fiber transmission systems[J]. Front. Optoelectron., 2018, 11(2): 128-133.
[3] Benxin WANG,Xiang ZHAI,Guizhen WANG,Weiqing HUANG,Lingling WANG. Broadband coplane metamaterial filter based on two nested split-ring-resonators[J]. Front. Optoelectron., 2016, 9(4): 565-570.
[4] Yu XIANG,Shilong PAN. GaAs-based polarization modulators for microwave photonic applications[J]. Front. Optoelectron., 2016, 9(3): 497-507.
[5] Xinliang ZHANG,Zhao WU. Linear optical signal processing with optical filters: a tutorial[J]. Front. Optoelectron., 2016, 9(3): 377-389.
[6] Xiaoping ZHENG,Shangyuan LI,Hanyi ZHANG,Bingkun ZHOU. Researches in microwave photonics based packages for millimeter wave system with wide bandwidth and large dynamic range[J]. Front. Optoelectron., 2016, 9(2): 186-193.
[7] Ming LI,Ninghua ZHU. Recent advances in microwave photonics[J]. Front. Optoelectron., 2016, 9(2): 160-185.
[8] M. Venkata SUDHAKAR,Y. Mallikarjuna REDDY,B. Prabhakara RAO. Influence of optical filtering on transmission capacity in single mode fiber communications[J]. Front. Optoelectron., 2015, 8(4): 424-430.
[9] Huiqi LIAO, Ming TANG, Hailiang ZHANG, Yiwei XIE. Tunable and programmable fiber ring laser based on digital-controlled chirped fiber Bragg grating[J]. Front Optoelec, 2013, 6(4): 468-471.
[10] Kan YU, Juanjuan YIN, Jiaqi BAO. Reflected-intensity distribution of angle-tuned thin film filter based on frequency recursive algorithm[J]. Front Optoelec, 2013, 6(2): 175-179.
[11] Xiang ZHOU. Enabling technologies and challenges for transmission of 400 Gb/s signals in 50 GHz channel grid[J]. Front Optoelec, 2013, 6(1): 30-45.
[12] Tan SHU, Yonglin YU, Hui LV, Dexiu Huang, Kai SHI, Liam BARRY. Influence of facet reflection of SOA on SOA-integrated SGDBR laser[J]. Front Optoelec, 2012, 5(4): 390-394.
[13] Hamidine MAHAMADOU, Xiuhua YUAN, Eljack M. SARAH, Weizheng ZOU. Simulation and comprehensive assessment of single channel RZ-DPSK optical link by dispersion management with channel bit rate beyond 40 Gbits/s[J]. Front Optoelec, 2012, 5(3): 322-329.
[14] Danhua WU, Xin SUI, Junbo YANG, Zhiping ZHOU. Binary blazed grating-based polarization-independent filter on silicon on insulator[J]. Front Optoelec, 2012, 5(1): 78-81.
[15] Lin GAN, Zhiyuan LI. Designs and experiments on infrared two-dimensional silicon photonic crystal slab devices[J]. Front Optoelec, 2012, 5(1): 21-40.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed