Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2014, Vol. 7 Issue (3) : 348-358    https://doi.org/10.1007/s12200-014-0449-8
REVIEW ARTICLE
Carrier recovery in coherent receiver of optical orthogonal frequency division multiplexing system
Changyuan YU1,2,*(),Pooi-Yuen KAM1,Shengjiao CAO2
1. Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
2. A*STAR Institute for Infocomm Research (I2R), Singapore 138632, Singapore
 Download: PDF(1552 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, we reviewed our common phase error (CPE) and intercarrier interference (ICI) compensation methods for coherent optical orthogonal frequency division multiplexing (CO-OFDM) system. We first presented a unified CPE estimation framework combining decision-aided (DA), pilot-aided (PA) and decision feedback (DF) algorithms. The DA method is used to estimate the CPE of the current OFDM symbol based on the decision statistics of the previous symbol. DA+ PA helps increase the phase noise tolerance of DA and reduce the overhead of PA, while DA+ DF reduces the overhead to zero, achieving best performance with one more step of estimation, compensation and demodulation. We also described a modified time-domain blind intercarrier interference (BL-ICI) mitigation algorithm over non-constant amplitude formats. The new algorithm is derived from the BL-ICI algorithm over constant amplitude format for wireless networks. A new power estimation scheme was proposed for the BL-ICI algorithm to adapt to non-constant amplitude format. It has the same order of complexity with frequency domain decision-aided ICI (DA-ICI) compensation method and does not suffer from symbol decision errors. The effectiveness of both CPE and ICI compensation algorithms were demonstrated in a simulated 56-Gbit/s CO-OFDM system with various modulation formats.

Keywords linear phase noise      coherent optical orthogonal frequency division multiplexing (CO-OFDM)      common phase error (CPE)      decision-aided (DA)      intercarrier interference (ICI)     
Corresponding Author(s): Changyuan YU   
Online First Date: 14 August 2014    Issue Date: 09 September 2014
 Cite this article:   
Changyuan YU,Pooi-Yuen KAM,Shengjiao CAO. Carrier recovery in coherent receiver of optical orthogonal frequency division multiplexing system[J]. Front. Optoelectron., 2014, 7(3): 348-358.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-014-0449-8
https://academic.hep.com.cn/foe/EN/Y2014/V7/I3/348
Fig.1  Simulation setup for coherent optical orthogonal frequency division multiplexing (CO-OFDM) system. S/P: serial to parallel; P/S: parallel to serial; DAC: digital to analog converter; ADC: analog to digital converter; Mod.: modulator; EDFA: erbium doped fiber amplifier
Fig.2  Phase estimation algorithm of DA + PA (Dk,i(1),0γ), DA + DF (Dk,i(2),γ=), PA + DF (Dk,i(2),γ=0) and DA + PA + DF (Dk,i(2),0γ) (Comp: compensation; Demod: demodulation)
methodcomplex multiplications for phase estimationcomplex multiplications for phase compensationtotal complex multiplicationsdemodulation
DANN2 N1 time
PANpNN +Np1 time
DA + PAN +NpN2N +Np1 time
DA + DF2 N2N4 N2 times
DDPE3 N2 N5 N2 times
Tab.1  Complexity comparison of different methods: DA [25,26], PA [14], DA + PA [26], DA + DF [26] and DDPE [17]
Fig.3  Blind ICI mitigation algorithm for non-constant amplitude format using average signal power or approximate signal power
Fig.4  BER curves of PA2/4/8, DDPE, DA, DA + PA2/4, DA + DF and coherent (no phase noise) for (a) QPSK, 100-kHz laser linewidth; (b) 16-QAM, 20-kHz laser linewidth
Fig.5  (a) Required total Eb/N0 value at BER = 10-3 or 10-4 versus Np of PA and DA + PA method for 100-kHz laser linewidth (QPSK); (b) the required total Eb/N0 of PA2/4/8, DDEP, DA, DA + PA2/4 and DA + DF versus laser linewidth (QPSK).
BL-ICI (average)DA-ICI
N-point DFTNB + 11
demodulation12
matrix inversion(NB-1)×(N B-1)(2u + 1) ×(2u + 1)
Tab.2  Computational complexity comparison between BL-ICI (average) and DA-ICI
Fig.6  Phase noise realization and its time-averages over the subblocks before (phase noise: green solid, average: red solid) and after (phase noise: blue solid, average: black dashed) ICI compensation when v = 100 kHz for different knowledge of Ek: (a) perfect, (b) average, (c) approximate and (d) two iterations
Fig.7  (a) Required effective SNRb versus laser linewidth for back-to-back 16-QAM CO-OFDM system using different knowledge of Ek; (b) BER versus SNRb with different knowledge of Ek at 100-kHz laser linewidth for different modulation formats: M-QAM (M = 8, 16, 32, 64)
Fig.8  Required OSNR versus laser linewidth after 2-span transmission for (a) 16-QAM (BER = 10-3) and (b) 64-QAM (BER = 3.8×10-3) OFDM using PA CPE compensation only, DA-ICI and BL-ICI with average signal power
1 Shieh W, Djordjevic I. OFDM for Optical Communications. Burlington: Academic Press, 2009
2 Shieh W, Yang Q, Ma Y. 107 Gb/s coherent optical OFDM transmission over 1000-km SSMF fiber using orthogonal band multiplexing. Optics Express, 2008, 16(9): 637<?Pub Caret?>8-6386
doi: 10.1364/OE.16.006378 pmid: 18545341
3 Hobayash T, Sano A, Yamada E. Electro-optically subcarrier multiplexed 110 Gb/s OFDM signal transmission over 80 km SMF without dispersion compensation. Electronics Letters, 2008, 44(3): 225-226
doi: 10.1049/el:20082534
4 Jansen S L, Morita I, Tanaka H. 10 × 121.9-Gb/s PDM-OFDM transmission with 2-b/s/Hz spectral efficiency over 1000 km of SSMF. In: Proceedings of Optical Fiber Communication Conference, 2008
5 Yi X W, Fontaine N K, Scott R P, Yoo S. Tb/s coherent optical OFDM systems enabled by optical frequency combs. Journal of Lightwave Technology, 2010, 28(14): 2054-2061
doi: 10.1109/JLT.2010.2053348
6 Hillerkuss D, Schellinger T, Schmogrow R, Winter M, Vallaitis T, Bonk R, Marculescu A, Li J, Dreschmann M, Meyer J, Ben Ezra S, Narkiss N, Nebendahl B, Parmigiani F, Petropoulos P, Resan B, Weingarten K, Ellermeyer T, Lutz J, Moller M, Huebner M, Becker J, Koos C, Freude W, Leuthold J. Single source optical OFDM transmitter and optical FFT receiver demonstrated at line rates of 5.4 and 10.8 Tbit/s. In: Proceedings of Optical Fiber Communication Conference, 2010
7 Ma Y R, Yang Q, Tang Y, Chen S M, Shieh W. 1-Tb/s single-channel coherent optical OFDM transmission with orthogonal-band multiplexing and subwavelength bandwidth access. Journal of Lightwave Technology, 2010, 28(4): 308-315
doi: 10.1109/JLT.2009.2030517
8 Yu J, Dong Z, Xiao X, Xia Y. Generation, transmission and coherent detection of 11.2 Tb/s (112×100Gb/s) single source optical OFDM superchannel. In: Proceedings of Optical Fiber Communication Conference, 2011
9 Noe R. PLL-free synchronous QPSK polarization multiplex/diversity receiver concept with digital I & Q baseband processing. IEEE Photonics Technology Letters, 2005, 17(4): 887-889
doi: 10.1109/LPT.2004.842795
10 Pfau T, Hoffmann S, Peveling R, Bhandare S, Ibrahim S K, Adamczyk O, Porrmann M, Noe R, Ac Y. First real-time data recovery for synchronous QPSK transmission with standard DFB lasers. IEEE Photonics Technology Letters, 2006, 18(18): 1907-1909
doi: 10.1109/LPT.2006.881653
11 Jansen S L, Morita I, Takeda N, Tanaka H. 20-Gb/s OFDM transmission over 4160-km SSMF enabled by RF-pilot tone phase noise compensation. In: Proceedings of Optical Fiber Communication Conference, 2007
12 Jansen S L, Morita I, Schenk T, Takeda N, Tanaka H. Coherent optical 25.8-Gb/s OFDM transmission over 4160-km SSMF. Journal of Lightwave Technology, 2008, 26(1): 6-15
doi: 10.1109/JLT.2007.911888
13 Randel S, Adhikari S, Jansen S. Analysis of RF-pilot-based phase noise compensation for coherent optical OFDM systems. IEEE Photonics Technology Letters, 2010, 22(17): 1288-1290
doi: 10.1109/LPT.2010.2053528
14 Yi X, Shieh W, Tang Y. Phase estimation for coherent optical OFDM. IEEE Photonics Technology Letters, 2007, 19(12): 919-921
doi: 10.1109/LPT.2007.897572
15 Shieh W. Maximum-likelihood phase estimation and channel estimation for coherent optical OFDM. IEEE Photonics Technology Letters, 2008, 20(8): 605-607
doi: 10.1109/LPT.2008.918873
16 Mousa-Pasandi M E, Plant D V. Data-aided adaptive weighted channel equalizer for coherent optical OFDM. Optics Express, 2010, 18(4): 3919-3927
doi: 10.1364/OE.18.003919 pmid: 20389404
17 Mousa-Pasandi M E, Plant D V. Zero-overhead phase noise compensation via decision-directed phase equalizer for coherent optical OFDM. Optics Express, 2010, 18(20): 20651-20660
doi: 10.1364/OE.18.020651 pmid: 20940960
18 Petrovic D, Rave W, Fettweis G. Phase noise suppression in OFDM including intercarrier interference. In: Proceedings of International OFDM Workshop (InOWo), 2003
19 Petrovic D, Rave W, Fettweis G. Intercarrier interference due to phase noise in OFDM - estimation and suppression. In: Proceedings of Vehicular Technology Conference (VTC), 2004
20 Lee M, Lim S, Yang K. Blind compensation for phase noise in OFDM systems over constant modulus modulation. IEEE Transactions on Communications, 2012, 60(3): 620-625
doi: 10.1109/TCOMM.2011.121511.110088
21 Yang C, Yang F, Wang Z. Orthogonal basis expansion-based phase noise estimation and suppression for CO-OFDM systems. IEEE Photonics Technology Letters, 2010, 22(1): 51-53
doi: 10.1109/LPT.2009.2035435
22 Chung W. A matched filtering approach for phase noise suppression in CO-OFDM systems. IEEE Photonics Technology Letters, 2010, 22(24): 1802-1804
doi: 10.1109/LPT.2010.2086053
23 Lin C T, Wei C C, Chao M I. Phase noise suppression of optical OFDM signals in 60-GHz RoF transmission system. Optics Express, 2011, 19(11): 10423-10428
doi: 10.1364/OE.19.010423 pmid: 21643297
24 Zhao C, Yang C, Yang F, Zhang F, Chen Z. A CO-OFDM system with almost blind phase noise suppression. IEEE Photonics Technology Letters, 2013, 25(17): 1723-1726
doi: 10.1109/LPT.2013.2273661
25 Cao S, Kam P Y, Yu C. Decision-aided carrier phase estimation for coherent optical OFDM. In: Proceedings of Opto-Electronics and Communications Conference (OECC), 2011
26 Cao S, Kam P Y, Yu C. Decision-aided, pilot-aided, decision-feedback phase estimation for coherent optical OFDM systems. IEEE Photonics Technology Letters, 2012, 24(22): 2067-2069
doi: 10.1109/LPT.2012.2219522
27 Cao S, Kam P, Yu C. Time-domain blind ICI mitigation for non-constant modulus format in CO-OFDM. IEEE Photonics Technology Letters, 2013, 25(24): 2490-2493
doi: 10.1109/LPT.2013.2288357
28 Zhang S, Kam P Y, Chen J, Yu C. Decision-aided maximum likelihood detection in coherent optical phase-shift-keying system. Optics Express, 2009, 17(2): 703-715
doi: 10.1364/OE.17.000703 pmid: 19158884
29 Zhang S, Kam P Y, Yu C, Chen J. Decision-aided carrier phase estimation for coherent optical communications. Journal of Lightwave Technology, 2010, 28(11): 1597-1607
doi: 10.1109/JLT.2010.2048198
30 Zhuge Q, Morsy-Osman M H, Plant D V. Low overhead intra-symbol carrier phase recovery for reduced-guard-interval CO-OFDM. Journal of Lightwave Technology, 2013, 31(8): 1158-1169
31 Zhuge Q, Chen C, Plant D V. Dispersion-enhanced phase noise effects on reduced-guard-interval CO-OFDM transmission. Optics Express, 2011, 19(5): 4472-4484
32 Liu X, Buchali F. Intra-symbol frequency-domain averaging based channel estimation for coherent optical OFDM. Optics Express, 2008, 16(26): 21944-21957
doi: 10.1364/OE.16.021944 pmid: 19104629
[1] Xinwei DU, Pooi-Yuen KAM, Changyuan YU. Joint timing and frequency synchronization in coherent optical OFDM systems[J]. Front. Optoelectron., 2019, 12(1): 4-14.
[2] Jean TEMGA,Deming LIU,Minming ZHANG. Improved pilot data aided feed forward based on maximum likelihood for carrier phase jitter recovery in coherent optical orthogonal frequency division multiplexing[J]. Front. Optoelectron., 2014, 7(4): 493-500.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed