Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2015, Vol. 8 Issue (1) : 93-97    https://doi.org/10.1007/s12200-014-0450-2
RESEARCH ARTICLE
Optical ionization evolution effect on photocurrent produced from two-color femtosecond laser pulses
Haiwei DU1,*(),Nan YANG2
1. Terahertz Sensing and Imaging Team, Center for Advanced Photonics, RIKEN, Sendai 9800845, Japan
2. Key Laboratory for Laser Plasmas (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
 Download: PDF(350 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

When laser intensity varies, the ionization induced by optical field can be described by multiphoton ionization (MPI) in low regime and tunneling ionization (TI) in high regime. An empirical formula was used to fit the ionization happened between these two limitation ionization processes. Based on this, ionization rate and photocurrent induced by two-color femtosecond laser pulses interaction with air-plasma were investigated numerically. It was found that they have different relations with the laser intensity.

Keywords multiphoton ionization (MPI)      tunneling ionization (TI)      photocurrent     
Corresponding Author(s): Haiwei DU   
Just Accepted Date: 09 October 2014   Online First Date: 14 November 2014    Issue Date: 13 February 2015
 Cite this article:   
Haiwei DU,Nan YANG. Optical ionization evolution effect on photocurrent produced from two-color femtosecond laser pulses[J]. Front. Optoelectron., 2015, 8(1): 93-97.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-014-0450-2
https://academic.hep.com.cn/foe/EN/Y2015/V8/I1/93
Fig.1  Relationship between Keldysh parameter γk (a), ionization rate w (b) and laser intensity
Fig.2  Relationship between photocurrent and laser intensity
Fig.3  Relationship between laser intensity, second harmonic (SH) phase and photocurrent
1 Thomson M, Kreβ M, L?ffler T, Roskos H. Broadband THz emission from gas plasmas induced by femtosecond optical: from fundamentals to applications. Laser & Photonics Reviews, 2007, 1(4): 349–368
https://doi.org/10.1002/lpor.200710025
2 Dai J, Clough B, Ho I, Lu X, Liu J, Zhang X C. Recent progresses in terahertz wave air photonics. IEEE Transactions on Terahertz Science and Technology, 2011, 1(1): 274–281
https://doi.org/10.1109/TTHZ.2011.2159550
3 Du H. Terahertz wave generation and detection based upon ultrafast laser technology. Chinese Journal of Quantum Electronics, 2013, 30(3): 257–267
4 Kim K Y, Glownia J H, Taylor A J, Rodriguez G. Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields. Optics Express, 2007, 15(8): 4577–4584
https://doi.org/10.1364/OE.15.004577 pmid: 19532704
5 Du H, Chen M, Sheng Z, Zhang J. Numerical studies on terahertz radiation generated from two-color laser pulse interaction with gas targets. Laser and Particle Beams, 2011, 29(04): 447–452
https://doi.org/10.1017/S0263034611000577
6 Du H, Yang N. Effect of gas species on THz generation from two-color lasers. Chinese Optics Letters, 2013, 11(6): 063202
https://doi.org/10.3788/COL201311.063202
7 Xu R, Bai Y, Song L, Li N, Peng P, Liu P. Terahertz emission by balanced nonlinear effects in air plasma. Chinese Optics Letters, 2013, 11(4): 123002
8 Cook D J, Hochstrasser R M. Intense terahertz pulses by four-wave rectification in air. Optics Letters, 2000, 25(16): 1210–1212
https://doi.org/10.1364/OL.25.001210 pmid: 18066171
9 Xie X, Dai J, Zhang X C. Coherent control of THz wave generation in ambient air. Physical Review Letters, 2006, 96(7): 075005
https://doi.org/10.1103/PhysRevLett.96.075005 pmid: 16606102
10 Li M, Li W, Shi Y, Lu P, Pan H, Zeng H. Verification of the physical mechanism of THz generation by dual-color ultrashort laser pulses. Applied Physics Letters, 2012, 101(16): 161104
https://doi.org/10.1063/1.4759268
11 Couairon A, Mysyrowicz A. Femtosecond filamentation in transparent. Physics Reports, 2007, 441(2–4): 47–189
https://doi.org/10.1016/j.physrep.2006.12.005
12 Mevel E, Breger P, Trainham R, Petite G, Agostini P, Migus A, Chambaret J P, Antonetti A. Atoms in strong optical fields: Evolution from multiphoton to tunnel ionization. Physical Review Letters, 1993, 70(4): 406–409
https://doi.org/10.1103/PhysRevLett.70.406 pmid: 10054104
13 Sprangle P, Pe?ano J R, Hafizi B. Propagation of intense short laser pulses in the atmosphere. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2002, 66(4): 046418
https://doi.org/10.1103/PhysRevE.66.046418 pmid: 12443341
14 Keldysh L. Ioization in the field of a strong electromagnetic wave. Journal of Experimental and Theoretical Physics, 1965, 20: 1307–1314
15 Kasparian J, Sauerbrey R, Chin S. The critical laser intensity of self-guided light filaments in air. Applied Physics. B, Lasers and Optics, 2000, 71(6): 877–879
https://doi.org/10.1007/s003400000463
16 Dai H, Liu J. Terahertz emission dependence on the fundamental optical intensity in generating terahertz waves from two-color laser induced gas plasma. Chinese Physics Letters, 2011, 28(10): 104201
https://doi.org/10.1088/0256-307X/28/10/104201
17 Blanchard F, Sharma G, Ropagnol X, Razzari L, Morandotti R, Ozaki T. Improved terahertz two-color plasma sources pumped by high intensity laser beam. Optics Express, 2009, 17(8): 6044– 6052
https://doi.org/10.1364/OE.17.006044 pmid: 19365426
[1] Zhuo DENG,Jiqiang NING,Rongxin WANG,Zhicheng SU,Shijie XU,Zheng XING,Shulong LU,Jianrong DONG,Hui YANG. Influence of temperature and reverse bias on photocurrent spectrum and supra-bandgap spectral response of monolithic GaInP/GaAs double-junction solar cell[J]. Front. Optoelectron., 2016, 9(2): 306-311.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed