|
|
|
Fiber up-taper assisted Mach-Zehnder interferometer for high sensitive temperature sensing |
Lili MAO1,2,Qizhen SUN1,2,Ping LU1,2,*( ),Zefeng LAO3,Deming LIU1,2 |
1. National Engineering Laboratory for Next Generation Internet Access System, Huazhong University of Science and Technology, Wuhan 430074, China 2. College of Optical and electronic information, Huazhong University of Science and Technology, Wuhan 430074, China 3. College of Electrical and electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China |
|
|
|
|
Abstract A new in-line Mach-Zehnder interferometer (MZI) sensor consisting of a stub of multi-mode fiber and an up-taper was proposed and demonstrated. Temperature measurement can be carried out by detecting wavelength shift. Dependency of sensitivity on interferometer length and dip wavelength was discussed. Experimental results showed a maximum temperature sensitivity of 113.6 pm/°C can be achieved, which is superior to most fiber temperature sensors based on in-line MZIs within the range from 20°C to 80°C, also a good mechanical strength can be obtained. The proposed sensor is a good candidate for temperature measurement, due to the advantages of simple structure, easy fabrication, cost-effective and high sensitivity.
|
| Keywords
Mach-Zehnder interferometer (MZI)
multimode fiber (MMF)
up-taper
fiber sensor
|
|
Corresponding Author(s):
Ping LU
|
|
Just Accepted Date: 09 October 2014
Online First Date: 02 November 2014
Issue Date: 24 November 2015
|
|
| 1 |
Li E B. Design and test of multimode interference based optical fiber temperature sensors. Proceedings of the Society for Photo-Instrumentation Engineers, 2008, 7157: 71570F-1–71570F-9
https://doi.org/10.1117/12.812007
|
| 2 |
Chen C, Yu S H, Yang R, Wang L, Guo J C, Chen Q D, Sun H B. Monitoring thermal effect in femtosecond laser interaction with glass by fiber Bragg grating. Journal of Lightwave Technology, 2011, 29(14): 2126–2130
https://doi.org/10.1109/JLT.2011.2151252
|
| 3 |
Guo J C, Yu Y S, Zhang X L, Chen C, Yang R, Wang C, Yang R Z, Chen Q D, Sun H B. Compact long-period fiber gratings with resonance at second-order diffraction. IEEE Photonics Technology Letters, 2012, 24(16): 1393–1395
https://doi.org/10.1109/LPT.2012.2204243
|
| 4 |
Ferreira M S, Coelho L, Schuster K, Kobelke J, Santos J L, Frazão O. Fabry-Pérot cavity based on a diaphragm-free hollow-core silica tube. Optics Letters, 2011, 36(20): 4029–4031
https://doi.org/10.1364/OL.36.004029
pmid: 22002375
|
| 5 |
Lee C L, Lee L H, Hwang H E, Hsu J M. Highly sensitive air-gap fiber Fabry-Pérot interferometers based on polymer-filled hollow core fibers. IEEE Photonics Technology Letters, 2012, 24(2): 149–151
https://doi.org/10.1109/LPT.2011.2174632
|
| 6 |
Li X F, Lin S, Liang J X, Zhang Y P, Oigawa H, Ueda T. Fiber-optic temperature sensor based on difference of thermal expansion coefficient between fused silica and metallic material. IEEE Photonics Journal, 2012, 4(1): 155–162
https://doi.org/10.1109/JPHOT.2011.2181943
|
| 7 |
Liu Y, Qu S, Li Y. Single microchannel high-temperature fiber sensor by femtosecond laser-induced water breakdown. Optics Letters, 2013, 38(3): 335–337
https://doi.org/10.1364/OL.38.000335
pmid: 23381429
|
| 8 |
Li E, Wang X, Zhang C. Fiber-optic temperature sensor based on interference of selective higher-order modes. Applied Physics Letters, 2006, 89(9): 091119
https://doi.org/10.1063/1.2344835
|
| 9 |
Wu D, Zhu T, Liu M. A high temperature sensor based on a peanut-shape structure Michelson interferometer. Optics Communications, 2012, 285(24): 5085–5088
https://doi.org/10.1016/j.optcom.2012.06.091
|
| 10 |
Jasim A A, Harun S W, Arof H, Ahmad H. Inline microfiber Mach–Zehnder interferometer for high temperature sensing. IEEE Sensors Journal, 2013, 13(2): 626–628
https://doi.org/10.1109/JSEN.2012.2224106
|
| 11 |
Nguyen L V, Hwang D, Moon S, Moon D S, Chung Y. High temperature fiber sensor with high sensitivity based on core diameter mismatch. Optics Express, 2008, 16(15): 11369–11375
https://doi.org/10.1364/OE.16.011369
pmid: 18648456
|
| 12 |
Lu P, Chen Q. Femtosecond laser microfabricated fiber Mach-Zehnder interferometer for sensing applications. Optics Letters, 2011, 36(2): 268–270
https://doi.org/10.1364/OL.36.000268
pmid: 21263522
|
| 13 |
Lu P, Men L, Sooley K, Chen Q Y. Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature. Applied Physics Letters, 2009, 94(13): 131110
|
| 14 |
Li L, Xia L, Xie Z, Liu D. All-fiber Mach-Zehnder interferometers for sensing applications. Optics Express, 2012, 20(10): 11109–11120
https://doi.org/10.1364/OE.20.011109
pmid: 22565734
|
| 15 |
Wang Y, Li Y, Liao C, Wang D N, Yang M, Lu P. High-temperature sensing using miniaturized fiber in-line Mach–Zehnder interferometer. IEEE Photonics Technology Letters, 2010, 22(1): 39–41
https://doi.org/10.1109/LPT.2009.2035638
|
| 16 |
Geng Y, Li X, Tan X, Deng Y, Yu Y. High-sensitivity Mach-Zehnder interferometric temperature fiber sensor based on a waist-enlarged fusion bitaper. IEEE Sensors Journal, 2011, 11(11): 2891–2894
https://doi.org/10.1109/JSEN.2011.2146769
|
| 17 |
Liu Y, Peng W, Liang Y Z, Zhang X, Zhou X, Pan L. Fiber-optic Mach-Zehnder interferometric sensor for high-sensitivity high temperature measurement. Optics Communications, 2013, 300: 194–198
https://doi.org/10.1016/j.optcom.2013.02.054
|
| 18 |
Frazão O, Silva S F O, Viegas J, Baptista J M, Santos J L, Kobelke J, Schuster K. All fiber Mach-Zehnder interferometer based on suspended twin-core fiber. IEEE Photonics Technology Letters, 2010, 22(17): 1300–1302
https://doi.org/10.1109/LPT.2010.2054071
|
| 19 |
Zhang S, Zhang W, Gao S, Geng P, Xue X. Fiber-optic bending vector sensor based on Mach-Zehnder interferometer exploiting lateral-offset and up-taper. Optics Letters, 2012, 37(21): 4480–4482
https://doi.org/10.1364/OL.37.004480
pmid: 23114336
|
| 20 |
Zhao C L, Wang Z, Zhang S, Qi L, Zhong C, Zhang Z, Jin S, Guo J, Wei H. Phenomenon in an alcohol not full-filled temperature sensor based on an optical fiber Sagnac interferometer. Optics Letters, 2012, 37(22): 4789–4791
https://doi.org/10.1364/OL.37.004789
pmid: 23164914
|
| 21 |
Moon D S, Kim B H, Lin A, Sun G, Han Y G, Han W T, Chung Y. The temperature sensitivity of Sagnac loop interferometer based on polarization maintaining side-hole fiber. Optics Express, 2007, 15(13): 7962–7967
https://doi.org/10.1364/OE.15.007962
pmid: 19547123
|
| 22 |
Zheng X B, Liu Y G, Wang S, Han T T, Wei C W, Chen J. Transmission and temperature sensing characteristics of a selectively liquid-filled photonic-bandgap-fiber-based Sagnac interferometer. Applied Physics Letters, 2012, 100(14): 141104
https://doi.org/10.1063/1.3699026
|
| 23 |
Han T, Liu Y G, Wang Z, Guo J, Wu Z, Wang S, Li Z, Zhou W. Unique characteristics of a selective-filling photonic crystal fiber Sagnac interferometer and its application as high sensitivity sensor. Optics Express, 2013, 21(1): 122–128
https://doi.org/10.1364/OE.21.000122
pmid: 23388902
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|