|
|
|
Recent progresses on optical arbitrary waveform generation |
Ming LI1,*( ),José AZA?A2,Ninghua ZHU1,Jianping YAO3 |
1. State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China 2. Institut National de la Recherche Scientifique - énergie, Matériaux et Télécommunications (INRS-EMT) 1650 boulevard Lionel-Boulet, Varennes, QC J3X 1S2, Canada 3. Microwave Photonics Research Laboratory, School of Electrical Engineering and Computer Science, University of Ottawa, ON K1N 6N5, Canada |
|
|
|
|
Abstract This paper reviews recent progresses on optical arbitrary waveform generation (AWG) techniques, which could be used to break the speed and bandwidth bottlenecks of electronics technologies for waveform generation. The main enabling techniques for optically generating optical and microwave waveforms are introduced and reviewed in this paper, such as wavelength-to-time mapping techniques, space-to-time mapping techniques, temporal pulse shaping (TPS) system, optoelectronics oscillator (OEO), programmable optical filters, optical differentiator and integrator and versatile electro-optic modulation implementations. The main advantages and challenges of these optical AWG techniques are also discussed.
|
| Keywords
optical arbitrary waveform generation (AWG)
wavelength-to-time mapping
optoelectronics oscillator (OEO)
temporal pulse shaping (TPS) system
optical differentiator and integrator
electro-optic modulation
|
|
Corresponding Author(s):
Ming LI
|
|
Online First Date: 25 August 2014
Issue Date: 09 September 2014
|
|
| 1 |
Win M, Scholtz R. Ultra-wide bandwidth time-hopping spread-spectrum impulse radio for wireless multiple-access communications. IEEE Transactions on Communications, 2000, 48(4): 679–689 doi: 10.1109/26.843135
|
| 2 |
Daniels R, Heath R Jr. 60 GHz wireless communications: emerging requirements and design recommendations. IEEE Vehicular Technology Magazine, 2007, 2(3): 41–50 doi: 10.1109/MVT.2008.915320
|
| 3 |
Lee J, Nguyen C, Scullion T. A novel, compact, low-cost, impulse ground-penetrating radar for nondestructive evaluation of pavements. IEEE Transactions on Instrumentation and Measurement, 2004, 53(6): 1502–1509 doi: 10.1109/TIM.2004.827308
|
| 4 |
Weiner A. Femtosecond pulse shaping using spatial light modulators. Review of Scientific Instruments, 2000, 71(5): 1929–1960 doi: 10.1063/1.1150614
|
| 5 |
Chou J, Han Y, Jalali B. Adaptive RF-photonic arbitrary waveform generator. IEEE Photonics Technology Letters, 2003, 15(4): 581–583 doi: 10.1109/LPT.2003.809309
|
| 6 |
Lin I, McKinney J, Weiner A. Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wideband communication. IEEE Microwave and Wireless Components Letters, 2005, 15(4): 226–228 doi: 10.1109/LMWC.2005.845698
|
| 7 |
Farhang M, Salehi J A. Spread-time/time-hopping UWB CDMA communication. In: Proceedings of IEEE International Symposium on Communications and Information Technology (ISCIT). 2004, 2: 1047–1050
|
| 8 |
Hamidi E, Weiner A. Phase-only matched filtering of ultrawideband arbitrary microwave waveforms via optical pulse shaping. Journal of Lightwave Technology, 2008, 26(15): 2355–2363 doi: 10.1109/JLT.2008.927175
|
| 9 |
McKinney J, Lin I, Weiner A. Shaping the power spectrum of ultra-wideband radio-frequency signals. IEEE Transactions on Microwave Theory and Techniques, 2006, 54(12): 4247–4255 doi: 10.1109/TMTT.2006.885573
|
| 10 |
Liu Y, Park S, Weiner A. Terahertz waveform synthesis via optical pulse shaping. IEEE Journal on Selected Topics in Quantum Electronics, 1996, 2(3): 709–719 doi: 10.1109/2944.571771
|
| 11 |
Miyamoto D, Mandai K, Kurokawa T, Takeda S, Shioda T, Tsuda H. Waveform-controllable optical pulse generation using an optical pulse synthesizer. IEEE Photonics Technology Letters, 2006, 18(5): 721–723 doi: 10.1109/LPT.2006.870080
|
| 12 |
Takiguchi K, Okamoto K, Takahashi H, Shibata T. Flexible pulse waveform generation using silica-waveguide-based spectrum synthesis circuit. Electronics Letters, 2004, 40(9): 537–538 doi: 10.1049/el:20040359
|
| 13 |
Pan S, Yao J. IR-UWB over fiber systems compatible with WDM-PON networks. Journal of Lightwave Technology, 2011, 29(20): 3025–3034 doi: 10.1109/JLT.2011.2165275
|
| 14 |
Lin J, Lu C L, Chuang H P, Kuo F M, Shi J W, Huang C B, Pan C L. Photonic generation and detection of W-band chirped millimeter-wave pulses for radar. IEEE Photonics Technology Letters, 2012, 24(16): 1437–1439 doi: 10.1109/LPT.2012.2205914
|
| 15 |
Shabani M, Akbari M. Simultaneous microwave chirped pulse generation and antenna beam steering. Progress in Electromagnetics Research, 2012, 22: 137–148 doi: 10.2528/PIERM11090906
|
| 16 |
Shi J W, Kuo F, Chen N, Set S, Huang C, Bowers J. Photonic generation and wireless transmission of linearly/nonlinearly continuously tunable chirped millimeter-wave waveforms with high time-bandwidth product at W-band. IEEE Photonics Journal, 2012, 4(1): 215–223 doi: 10.1109/JPHOT.2012.2183119
|
| 17 |
Deng Y, Li M, Huang N, Zhu N. Ka-band tunable flat-top microwave photonic filter using a multi-phase-shifted fiber Bragg grating. Photonics Journal, 2014, (in press)
|
| 18 |
Zou X, Li M, Pan W, Luo B, Yan L, Shao L. Optical length change measurement via RF frequency shift analysis of incoherent light source based optoelectronic oscillator. Optics Express, 2014, 22(9): 11129–11139 doi: 10.1364/OE.22.011129 pmid: 24921811
|
| 19 |
Deng Y, Li M, Huang N, Wang H, Zhu N. Optical length change measurement based on an incoherent single bandpass microwave photonic filter with high resolution. Photonics Research, 2014, 2(4): B35 doi: 10.1364/PRJ.2.000B35
|
| 20 |
Deng Y, Li M, Huang N, Azana J, Zhu N. Serial time-encoded amplified microscopy for ultrafast imaging based on multi-wavelength laser. Chinese Science Bulletin, 2014, 59(22): 2693–2701 doi: 10.1007/s11434-014-0381-8
|
| 21 |
Guo J J, Li M, Deng Y, Huang N, Liu J, Zhu N. Multichannel optical filters with an ultranarrow bandwidth based on sampled Brillouin dynamic gratings. Optics Express, 2014, 22(4): 4290–4300 doi: 10.1364/OE.22.004290 pmid: 24663752
|
| 22 |
Zou X, Li M, Ge W, Pan W, Luo B, Yan L, Aza?a J. Synthesis of fiber Bragg gratings with arbitrary stationary power/field distribution. IEEE Journal of Quantum Electronics, 2014, 50(3): 186–197 doi: 10.1109/JQE.2014.2302322
|
| 23 |
Wang H, Zheng J Y, Li W, Wang L X, Li M, Xie L, Zhu N H. Widely tunable single-bandpass microwave photonic filter based on polarization processing of a nonsliced broadband optical source. Optics Letters, 2013, 38(22): 4857–4860 doi: 10.1364/OL.38.004857 pmid: 24322150
|
| 24 |
Zheng J, Zhu N, Wang L, Li M, Wang H, Li W, Qi X, Liu J. Spectral sculpting of chaotic-UWB signals using a dual-loops optoelectronic oscillator. IEEE Photonics Technology Letters, 2013, 25(24): 2397–2400 doi: 10.1109/LPT.2013.2286395
|
| 25 |
Zou X, Li M, Pan W, Yan L, Aza?a J, Yao J. All-fiber optical filter with an ultranarrow and rectangular spectral response. Optics Letters, 2013, 38(16): 3096–3098 doi: 10.1364/OL.38.003096 pmid: 24104658
|
| 26 |
Li B, Li M, Lou S, Aza?a J. Linear optical pulse compression based on temporal zone plates. Optics Express, 2013, 21(14): 16814–16830 doi: 10.1364/OE.21.016814 pmid: 23938532
|
| 27 |
Malacarne A, Ashrafi R, Li M, LaRochelle S, Yao J, Aza?a J. Single-shot photonic time-intensity integration based on a time-spectrum convolution system. Optics Letters, 2012, 37(8): 1355–1357 doi: 10.1364/OL.37.001355 pmid: 22513684
|
| 28 |
Li W, Li M, Yao J. A narrow-passband and frequency-tunable micro-wave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(5): 1287–1296 doi: 10.1109/TMTT.2012.2187678
|
| 29 |
Liu W, Li M, Wang C, Yao J. Real-time interrogation of a linearly chirped fiber Bragg grating sensor based on chirped pulse compression with improved resolution and signal-to-noise ratio. Journal of Lightwave Technology, 2011, 29(9): 1239–1247 doi: 10.1109/JLT.2011.2123081
|
| 30 |
Shahoei H, Li M, Yao J. Continuously tunable time delay using an optically pumped linearly chirped fiber Bragg grating. IEEE/OSA. Journal of Lightwave Technology, 2011, 29(10): 1465–1472 doi: 10.1109/JLT.2011.2132754
|
| 31 |
Li Z, Wang C, Li M, Chi H, Zhang X, Yao J. Instantaneous microwave frequency measurement using a special fiber Bragg grating. IEEE Microwave Theory and Wireless Component Letters, 2011, 21(1): 52–54 doi: 10.1109/LMWC.2010.2091114
|
| 32 |
Capmany J, Mora J, Gasulla I, Sancho J, Lloret J, Sales S. Microwave photonic signal processing. Journal of Lightwave Technology, 2013, 31(4): 571–586 doi: 10.1109/JLT.2012.2222348
|
| 33 |
Minasian R. Photonic signal processing of microwave signals. IEEE Transactions on Microwave Theory and Techniques, 2006, 54(2): 832–846 doi: 10.1109/TMTT.2005.863060
|
| 34 |
Yao J, Zeng F, Wang Q. Photonic generation of ultrawideband signals. Journal of Lightwave Technology, 2007, 25(11): 3219–3235 doi: 10.1109/JLT.2007.906820
|
| 35 |
Yao J. Photonic generation of microwave arbitrary waveforms. Optics Communications, 2011, 284(15): 3723–3736 doi: 10.1016/j.optcom.2011.02.069
|
| 36 |
Wang C, Yao J. Fiber Bragg gratings for microwave photonics subsystems. Optics Express, 2013, 21(19): 22868–22884 doi: 10.1364/OE.21.022868 pmid: 24104174
|
| 37 |
Torres-Company V, Metcalf A J, Leaird D E, Weiner A M. Multichannel radio-frequency arbitrary waveform generation based on multiwavelength comb switching and 2-D line-by-line pulse shaping. IEEE Photonics Technology Letters, 2012, 24(11): 891–893 doi: 10.1109/LPT.2012.2190054
|
| 38 |
Shahoei H, Yao J. Continuously tunable chirped microwave waveform generation using a tilted fiber Bragg grating written in an erbium/ytterbium codoped fiber. IEEE Photonics Journal, 2012, 4(3): 765–771 doi: 10.1109/JPHOT.2012.2197605
|
| 39 |
Jiang H, Yan L, Ye J, Pan W, Luo B, Zou X. Photonic generation of microwave signals with tunabilities. Chinese Science Bulletin, 2014, 59(22): 2672–2683 doi: 10.1007/s11434-014-0450-z
|
| 40 |
Burla M, Cortés L R, Li M, Wang X, Chrostowski L, Aza?a J. Integrated waveguide Bragg gratings for microwave photonics signal processing. Optics Express, 2013, 21(21): 25120–25147 doi: 10.1364/OE.21.025120 pmid: 24150355
|
| 41 |
Wang C, Yao J. Photonic generation of chirped millimeter-wave pulses based on nonlinear frequency-to-time mapping in a nonlinearly chirped fiber Bragg grating. IEEE Transactions on Microwave Theory and Techniques, 2008, 56(2): 542–553 doi: 10.1109/TMTT.2007.914639
|
| 42 |
Wang C, Yao J. Phase-coded millimeter-wave waveform generation using a spatially discrete chirped fiber Bragg grating. IEEE Photonics Technology Letters, 2012, 24(17): 1493–1495 doi: 10.1109/LPT.2012.2206580
|
| 43 |
Zhang F, Ge X, Pan S, Yao J. Photonic generation of pulsed microwave signals with tunable frequency and phase based on spectral-shaping and frequency-to-time mapping. Optics Letters, 2013, 38(20): 4256–4259 doi: 10.1364/OL.38.004256 pmid: 24321973
|
| 44 |
Zhang F, Ge X, Pan S. Background-free pulsed microwave signal generation based on spectral shaping and frequency-to-time mapping. Photonics Research, 2014, 2(4): B5–B10 doi: 10.1364/PRJ.2.0000B5
|
| 45 |
Rashidinejad A, Weiner A.Photonic radio-frequency arbitrary waveform generation with maximal time-bandwidth product capability. Journal of Lightwave Technology, 2014, PP(99): 1 doi: 10.1109/JLT.2014.2331491
|
| 46 |
Yao J, Zhang J, Asghari M H. Time-bandwidth product expansion of microwave waveforms using anamorphic stretch transform. In: Proceedings of CLEO: QELS_Fundamental Science. 2014, JTh2A.38
|
| 47 |
Wang C, Zeng F, Yao J. All-fiber ultrawideband pulse generation based on spectral shaping and dispersion-induced frequency-to-time conversion. IEEE Photonics Technology Letters, 2007, 19(3): 137–139 doi: 10.1109/LPT.2006.888966
|
| 48 |
Chi H, Zeng F, Yao J. Photonic generation of microwave signals based on pulse shaping. IEEE Photonics Technology Letters, 2007, 19(9): 668–670 doi: 10.1109/LPT.2007.894979
|
| 49 |
Wang C, Yao J. Photonic generation of chirped microwave pulses using superimposed chirped fiber Bragg gratings. IEEE Photonics Technology Letters, 2008, 20(11): 882–884 doi: 10.1109/LPT.2008.922333
|
| 50 |
Chi H, Yao J. All-fiber chirped microwave pulse generation based on spectral shaping and wavelength-to-time conversion. IEEE Transactions on Microwave Theory and Techniques, 2007, 55(9): 1958–1963 doi: 10.1109/TMTT.2007.904084
|
| 51 |
Li M, Shao L, Albert J, Yao J. Tilted fiber Bragg grating for chirped microwave waveform generation. IEEE Photonics Technology Letters, 2011, 23(5): 314–316 doi: 10.1109/LPT.2010.2102013
|
| 52 |
Leaird D E, Weiner A M. Femtosecond direct space-to-time pulse shaping in an integrated-optic configuration. Optics Letters, 2004, 29(13): 1551–1553 doi: 10.1364/OL.29.001551 pmid: 15259743
|
| 53 |
McKinney J D, Leaird D E, Weiner A M. Millimeter-wave arbitrary waveform generation with a direct space-to-time pulse shaper. Optics Letters, 2002, 27(15): 1345–1347 doi: 10.1364/OL.27.001345 pmid: 18026445
|
| 54 |
Ashrafi R, Li M, Azana J. Multi-TBaud optical coding based on superluminal space-to-time mapping in long period gratings. Scientific Research, 2013, 3(2): 126–130
|
| 55 |
Ashrafi R, Li M, Belhadj N, Dastmalchi M, LaRochelle S, Aza?a J. Experimental demonstration of superluminal space-to-time mapping in long period gratings. Optics Letters, 2013, 38(9): 1419–1421 doi: 10.1364/OL.38.001419 pmid: 23632504
|
| 56 |
Ashrafi R, Li M, Aza?a J. Tsymbol/s optical coding based on long period gratings. IEEE Photonics Technology Letters, 2013, 25(10): 910–913 doi: 10.1109/LPT.2013.2255034
|
| 57 |
Ashrafi R, Li M, Aza?a J. Coupling-strength-independent long-period grating designs for THz-bandwidth optical differentiators. IEEE Photonics Journal, 2013, 5(2): 7100311 doi: 10.1109/JPHOT.2013.2256117
|
| 58 |
Ashrafi R, Li M, LaRochelle S, Aza?a J. Superluminal space-to-time mapping in grating-assisted co-directional couplers. Optics Express, 2013, 21(5): 6249–6256 doi: 10.1364/OE.21.006249 pmid: 23482194
|
| 59 |
Chi H, Yao J. Symmetrical waveform generation based on temporal pulse shaping using an amplitude-only modulator. Electronics Letters, 2007, 43(7): 415–417 doi: 10.1049/el:20073808
|
| 60 |
Li M, Yao J. Photonic generation of continuously tunable chirped microwave waveforms based on a temporal interferometer incorporating an optically-pumped linearly-chirped fiber Bragg grating. IEEE Transactions on Microwave Theory and Techniques, 2011, 59(12): 3531–3537 doi: 10.1109/TMTT.2011.2169078
|
| 61 |
Li M, Yao J. All-optical short-time Fourier transform based on a temporal pulse shaping system incorporating an array of cascaded linearly chirped fiber Bragg gratings. IEEE Photonics Technology Letters, 2011, 23(20): 1439–1441 doi: 10.1109/LPT.2011.2162624
|
| 62 |
Han Y, Li Z, Pan S, Li M, Yao J. Photonic-assisted tunable microwave pulse fractional Hilbert transformer based on a temporal pulse shaping system. IEEE Photonics Technology Letters, 2011, 23(9): 570–572 doi: 10.1109/LPT.2011.2116113
|
| 63 |
Li M, Han Y, Pan S, Yao J. Experimental demonstration of symmetrical waveform generation based on amplitude-only modulation in a temporal pulse shaping system. IEEE Photonics Technology Letters, 2011, 23(11): 715–717 doi: 10.1109/LPT.2011.2132122
|
| 64 |
Li M, Wang C, Li W, Yao J. An unbalanced temporal pulse shaping system for chirped microwave waveform generation. IEEE Transactions on Microwave Theory and Techniques, 2010, 58(11): 2968–2975 doi: 10.1109/TMTT.2010.2079070
|
| 65 |
Wang C, Li M, Yao J. Continuously tunable photonic microwave frequency multiplication by use of an unbalanced temporal pulse shaping system. IEEE Photonics Technology Letters, 2010, 22(17): 1285–1287 doi: 10.1109/LPT.2010.2053351
|
| 66 |
Li W, Yao J. Generation of linearly chirped microwave waveform with an increased time-bandwidth product based on a tunable optoelectronic oscillator and a recirculating phase modulation loop. Journal of Lightwave Technology, 2014: 1 doi: 10.1109/JLT.2014.2309392
|
| 67 |
Huang N, Li M, Deng Y, Zhu N. Optical pulse generation based on an optoelectronic oscillator with cascaded nonlinear semiconductor optical amplifiers. Photonics Journal, 2014, 6(1): 5500208-1–5500208-8
|
| 68 |
Li M, Li W, Yao J. A tunable optoelectronic oscillator based on a high-Q spectrum-sliced photonic microwave transversal filter. IEEE Photonics Technology Letters, 2012, 24(14): 1251–1253 doi: 10.1109/LPT.2012.2201462
|
| 69 |
Scott R P, Fontaine N K, Heritage J P, Yoo S J. Dynamic optical arbitrary waveform generation and measurement. Optics Express, 2010, 18(18): 18655–18670 doi: 10.1364/OE.18.018655 pmid: 20940758
|
| 70 |
Hu Y, Li M, Bongiovanni D, Clerici M, Yao J, Chen Z, Aza?a J, Morandotti R. Spectrum to distance mapping via nonlinear Airy pulses. Optics Letters, 2013, 38(3): 380–382 doi: 10.1364/OL.38.000380 pmid: 23381444
|
| 71 |
Li M, Jeong H S, Aza?a J, Ahn T J. 25-terahertz-bandwidth all-optical temporal differentiator. Optics Express, 2012, 20(27): 28273–28280 doi: 10.1364/OE.20.028273 pmid: 23263061
|
| 72 |
Liu W, Li M, Guzzon R, Norberg E, Parker J, Coldren L, Yao J. Photonic temporal integrator with an ultra-long integration time window based on an InP-InGaAsP integrated ring resonator. Journal of Lightwave Technology, 2014: 1 doi: 10.1109/JLT.2014.2323249
|
| 73 |
Huang N, Li M, Ashrafi R, Wang L, Wang X, Aza?a J, Zhu N. Active Fabry-Perot cavity for photonic temporal integrator with ultra-long operation time window. Optics Express, 2014, 22(3): 3105–3116 doi: 10.1364/OE.22.003105 pmid: 24663601
|
| 74 |
Fernandez M, Li M, Dastmalchi M, Carballar A, LaRochelle S, Aza?a J. Picosecond optical signal processing based on transmissive fiber Bragg gratings. Optics Letters, 2013, 38(8): 1–3 pmid: 23282818
|
| 75 |
Li M, Dumais P, Ashrafi R, Bazargani H, Quéléne J, Callender C, Aza?a J. Ultrashort flat-top pulse generation using on-chip CMOS-compatible Mach-Zehnder interferometers. IEEE Photonics Technology Letters, 2012, 24(16): 1387–1389 doi: 10.1109/LPT.2012.2203335
|
| 76 |
Li M, Yao J. Ultrafast all-optical wavelet transform based on temporal pulse shaping incorporating a two-dimensional array of cascaded linearly chirped fiber Bragg gratings. IEEE Photonics Technology Letters, 2012, 24(15): 1319–1321 doi: 10.1109/LPT.2012.2202316
|
| 77 |
Li M, Yao J. Multichannel arbitrary-order photonic temporal differentiator for wavelength-division-multiplexed signal processing using a single fiber Bragg grating. Journal of Lightwave Technology, 2011, 29(17): 2506–2511 doi: 10.1109/JLT.2011.2159827
|
| 78 |
Li M, Shao L, Albert J, Yao J. Continuously tunable photonic fractional temporal differentiator based on a tilted fiber Bragg grating. IEEE Photonics Technology Letters, 2011, 23(4): 251–253 doi: 10.1109/LPT.2010.2098475
|
| 79 |
Li M, Yao J. Experimental demonstration of a wideband photonic temporal Hilbert transformer based on a single fiber Bragg grating. IEEE Photonics Technology Letters, 2010, 22(21): 1559–1561 doi: 10.1109/LPT.2010.2066964
|
| 80 |
Li M, Yao J. All-fiber temporal photonic fractional Hilbert transformer based on a directly designed fiber Bragg grating. Optics Letters, 2010, 35(2): 223–225 doi: 10.1364/OL.35.000223 pmid: 20081975
|
| 81 |
Li M, Janner D, Yao J, Pruneri V. Arbitrary-order all-fiber temporal differentiator based on a fiber Bragg grating: design and experimental demonstration. Optics Express, 2009, 17(22): 19798–19807 doi: 10.1364/OE.17.019798 pmid: 19997201
|
| 82 |
Liu W, Yao J. Photonic generation of arbitrary microwave waveforms based on a polarization modulator in a Sagnac loop. Journal of Lightwave Technology, 2014, (accepted)
|
| 83 |
Xiang P, Zheng X, Zhang H, Li Y, Chen Y. A novel approach to photonic generation of RF binary digital modulation signals. Optics Express, 2013, 21(1): 631–639 doi: 10.1364/OE.21.000631 pmid: 23388956
|
| 84 |
Liu X, Pan W, Zou X, Zheng D, Yan L, Luo B, Lu B. Photonic generation of triangular-shaped microwave pulses using SBS-based optical carrier processing. Journal of Lightwave Technology, 2014, PP(99): 1 doi: 10.1109/JLT.2014.2313349
|
| 85 |
Xiang P, Zheng X, Zhang H, Li Y, Wang R. Photonic generation of BFSK RF signals based on optical pulse shaping. Optoelectronics Letters, 2012, 8(5): 368–371 doi: 10.1007/s11801-012-2253-2
|
| 86 |
Chi H, Yao J. An approach to photonic generation of high-frequency phase-coded RF pulses. IEEE Photonics Technology Letters, 2007, 19(10): 768–770 doi: 10.1109/LPT.2007.895898
|
| 87 |
Chi H, Yao J. Photonic generation of phase-coded millimeter-wave signal using a polarization modulator. IEEE Microwave and Wireless Components Letters, 2008, 18(5): 371–373 doi: 10.1109/LMWC.2008.922136
|
| 88 |
Li W, Wang L X, Zheng J Y, Li M, Zhu N H. Photonic generation of ultrawideband signals with large carrier frequency tunability based on an optical carrier phase-shifting method. IEEE Photonics Journal, 2013, 5(5): 5502007 doi: 10.1109/JPHOT.2013.2284260
|
| 89 |
Li W, Wang L X, Li M, Zhu N H. Photonic generation of widely tunable and background-free binary phase-coded radio-frequency pulses. Optics Letters, 2013, 38(17): 3441–3444 doi: 10.1364/OL.38.003441 pmid: 23988979
|
| 90 |
Li W, Wang L X, Li M, Zhu N H. Single phase modulator for binary phase-coded microwave signals generation with large carrier frequency tunability. IEEE Photonics Technology Letters, 2013, 25(19): 1867–1870 doi: 10.1109/LPT.2013.2278277
|
| 91 |
Li W, Wang L X, Zheng J Y, Li M, Zhu N H. Photonic MMW-UWB signal generation via DPMZM-based frequency up-conversion. IEEE Photonics Technology Letters, 2013, 25(19): 1875–1878 doi: 10.1109/LPT.2013.2278867
|
| 92 |
Li W, Wang L X, Li M, Wang H, Zhu N H. Photonic generation of binary phase-coded microwave signals with large frequency tunability using a dual-parallel Mach-Zehnder modulator. IEEE Photonics Journal, 2013, 5(4): 5501507 doi: 10.1109/JPHOT.2013.2274771
|
| 93 |
Fernández-Ruiz M R, Li M, Aza?a J. Time-domain holograms for generation and processing of temporal complex information by intensity-only modulation processes. Optics Express, 2013, 21(8): 10314–10323 doi: 10.1364/OE.21.010314 pmid: 23609741
|
| 94 |
Li M, Li Z, Yao J P. Photonic generation of a precisely pi phase shifted binary phase-coded microwave signal. IEEE Photonics Technology Letters, 2012, 24(22): 2001–2004 doi: 10.1109/LPT.2012.2217486
|
| 95 |
Li Z, Li M, Chi H, Zhang X, Yao J. Photonic generation of phase-coded millimeter-wave signal with large frequency tunability using a polarization-maintaining fiber Bragg grating. IEEE Microwave and Wireless Components Letters, 2011, 21(12): 694–696 doi: 10.1109/LMWC.2011.2170673
|
| 96 |
Khan M H, Shen H, Xuan Y, Zhao L, Xiao S, Leaird D E, Weiner A M, Qi M. Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper. Nature Photonics, 2010, 4(2): 117–122 doi: 10.1038/nphoton.2009.266
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|