Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2015, Vol. 8 Issue (3) : 314-318    https://doi.org/10.1007/s12200-015-0447-5
RESEARCH ARTICLE
Improved gas sensor with air-core photonic bandgap fiber
Saeed OLYAEE(),Hassan ARMAN()
Nano-Photonic and Optoelectronic Research Laboratory (NORLab), Faculty of Electrical and Computer Engineering, Shahid Rajaee Teacher Training University, Tehran 16788-15811, Iran
 Download: PDF(588 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The propagation loss of a fiber can be increased by coupling core mode and surface mode which will deteriorate the performance of photonic bandgap fiber (PBGF). In this paper, we presented an air-core PBGF for gas sensing applications. By designing Λ = 2.63 µm, d = 0.95 Λ, and Rcore= 1.13 Λ, where Λ is the distance between the adjacent air holes, the fiber was single-mode, no surface mode was supported with fiber, and more than 90% of the optical power was confined in the core. Furthermore, with optimizing the fiber structural parameters, at wavelength of λ = 1.55 µm that is in acetylene gas absorption line, significant relative sensitivity of 92.5%, and acceptable confinement loss of 0.09 dB/m, were simultaneously achieved.

Keywords gas sensor      photonic bandgap fiber (PBGF)      sensitivity      surface modes      air core radius      confinement loss     
Corresponding Author(s): Saeed OLYAEE   
Just Accepted Date: 04 June 2015   Online First Date: 30 June 2015    Issue Date: 18 September 2015
 Cite this article:   
Saeed OLYAEE,Hassan ARMAN. Improved gas sensor with air-core photonic bandgap fiber[J]. Front. Optoelectron., 2015, 8(3): 314-318.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-015-0447-5
https://academic.hep.com.cn/foe/EN/Y2015/V8/I3/314
Fig.1  Cross section of the proposed fiber
Fig.2  Band diagram of proposed fiber
Fig.3  Optical field distribution in PBGF for the core radius of (a) Rcore = 1.22 Λ, (b) Rcore = 1.10 Λ, and (c) Rcore = 1.13 Λ (the optimum case)
Fig.4  Relative sensitivity versus air-core radius
Fig.5  Confinement loss versus air-filling factor
Fig.6  Confinement loss with respect to the air-core radius
1 Lopez-Higuera J M. Handbook of Optical Fibre Sensing Technology. New York: John Wiley & Sons, 2002
2 Olyaee S, Naraghi A, Ahmadi V. High sensitivity evanescent-field gas sensor based on modified photonic crystal fiber for gas condensate and air pollution monitoring. Optik (Stuttgart), 2014, 125(1): 596–600
https://doi.org/10.1016/j.ijleo.2013.07.047
3 Olyaee S, Naraghi A. Design and optimization of index-guiding photonic crystal fiber gas sensor. Photonic Sensors, 2013, 3(2): 131–136
https://doi.org/10.1007/s13320-013-0096-5
4 Naraghi A, Olyaee S, Najibi A, Leitgeb E. Photonic crystal fiber gas sensor for using in optical network protection systems. In: Proceedings of the 18th European Conference on Network and Optical Communications and the 8th Conference on Optical Cabling and Infrastructure, 2013
5 Wolfbeis O S. Fiber-Optic Chemical and Biosensors. Boca Raton, FL: CRC Press, 1991
6 Hoo Y L, Jin W, Ho H L, Wang D N. Evanescent-wave gas sensing using microstructure fiber. Optical Engineering (Redondo Beach, Calif.), 2002, 41(1): 8–9
https://doi.org/10.1117/1.1429930
7 L?gsgaar J, Mortensen N A, Riishede J, Bjarklev A. Material effects in air-guiding photonic bandgap fibers. Journal of the Optical Society of America B, Optical Physics, 2003, 20(10): 2046–2051
https://doi.org/10.1364/JOSAB.20.002046
8 Humbert G, Knight J, Bouwmans G, Russell P, Williams D, Roberts P, Mangan B. Hollow core photonic crystal fibers for beam delivery. Optics Express, 2004, 12(8): 1477–1484
https://doi.org/10.1364/OPEX.12.001477 pmid: 19474973
9 Ritari T. Novel sensor and telecommunication applications of photonic crystal fibers. Dissertation for the Doctoral Degree. Finland: Helsinki University, 2006
10 Smolka S, Barth M, Benson O. Highly efficient fluorescence sensing with hollow core photonic crystal fibers. Optics Express, 2007, 15(20): 12783–12791
https://doi.org/10.1364/OE.15.012783 pmid: 19550548
11 Hoo Y L, Jin W, Ho H L, Wang D N. Measurement of gas diffusion coefficient using photonic crystal fiber. IEEE Photonics Technology Letters, 2003, 15(10): 1434–1436
https://doi.org/10.1109/LPT.2003.818241
12 Hoo Y L, Jin W, Ju J, Ho H L. Numerical investigation of a depressed-index core photonic crystal fiber for gas sensing. Sensors and Actuators B: Chemical, 2009, 139(2): 460–465
https://doi.org/10.1016/j.snb.2009.02.070
13 Yu X, Zhang Y, Kwok Y C, Shum P. Highly sensitive photonic crystal based absorption spectroscopy. Sensors Actuators, B: Chemical, 2010, 145(1): 110–113
14 Park J, Lee S, Kim S, Oh K. Enhancement of chemical sensing capability in a photonic crystal fiber with a hollow high index ring defect at the center. Optics Express, 2011, 19(3): 1921–1929
https://doi.org/10.1364/OE.19.001921 pmid: 21369007
15 Hu J, Menyuk C R. Leakage loss and bandgap analysis in air-core photonic bandgap fiber for nonsilica glasses. Optics Express, 2007, 15(2): 339–349
https://doi.org/10.1364/OE.15.000339 pmid: 19532249
16 Stewart G, Norris J, Clark D F, Culshaw B. Evanescent-wave chemical sensors a theoretical evaluation. International Journal of Optoelectron, 1991, 6(3): 227–238
17 Ritari T, Tuminen J, Ludvigsen H, Petersen J C, S?rensen T, Hansen T P, Simonsen H R. Gas sensing using air-guiding photonic bandgap fiber. Optics Express, 2004, 12(17): 4080–4087
https://doi.org/10.1364/OPEX.12.004080
18 Saitoh K, Koshiba M. Leakage loss and group velocity dispersion in air-core photonic bandgap fibers. Optics Express, 2003, 11(23): 3100–3109
https://doi.org/10.1364/OE.11.003100 pmid: 19471432
19 Saitoh K, Koshiba M. Photonic bandgap fibers with high birefringence. IEEE Photonics Technology Letters, 2002, 14(9): 1291–1293
https://doi.org/10.1109/LPT.2002.801045
[1] Etu PODDER, Md. Bellal HOSSAIN, Rayhan Habib JIBON, Abdullah Al-Mamun BULBUL, Himadri Shekhar MONDAL. Chemical sensing through photonic crystal fiber: sulfuric acid detection[J]. Front. Optoelectron., 2019, 12(4): 372-381.
[2] Mingzhu SONG, Hongsong QU, Guixiang ZHANG, Guang JIN. Detection of small ship targets from an optical remote sensing image[J]. Front. Optoelectron., 2018, 11(3): 275-284.
[3] Swapnajit CHAKRAVARTY,Xiangning CHEN,Naimei TANG,Wei-Cheng LAI,Yi ZOU,Hai YAN,Ray T. CHEN. Review of design principles of 2D photonic crystal microcavity biosensors in silicon and their applications[J]. Front. Optoelectron., 2016, 9(2): 206-224.
[4] Xiaofei LU,Xi-Cheng ZHANG. Investigation of ultra-broadband terahertz time-domain spectroscopy with terahertz wave gas photonics[J]. Front. Optoelectron., 2014, 7(2): 121-155.
[5] Guodong WANG, Yunjian WANG, Na LI. Axial strain sensitivity analysis of long period fiber grating by new transfer matrix method[J]. Front Optoelec Chin, 2011, 4(4): 430-433.
[6] Saeed OLYAEE, Fahimeh TAGHIPOUR, Mahdieh IZADPANAH. Nearly zero-dispersion, low confinement loss, and small effective mode area index-guiding PCF at 1.55 μm wavelength[J]. Front Optoelec Chin, 2011, 4(4): 420-425.
[7] Xin LIU, Deming LIU, Wei WU, Zheng QIN. A modified dual-wavelength matrix calculation method[J]. Front Optoelec Chin, 2009, 2(3): 285-288.
[8] Shaomin LI, Xiaoying LIU, Chong LIU. FBG sensing temperature characteristic and application in oil/gas down-hole measurement[J]. Front Optoelec Chin, 2009, 2(2): 233-238.
[9] Xiaonong ZHU, Yanmei LIANG, Youxin MAO, Yaqing JIA, Yiheng LIU, Guoguang MU. Analyses and calculations of noise in optical coherence tomography systems[J]. Front Optoelec Chin, 2008, 1(3-4): 247-257.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed