|
|
|
Vascular distribution imaging of dorsal skin window chamber in mouse with spectral domain optical coherence tomography |
Jian GAO1,Xiao PENG1,Peng LI2,*( ),Zhihua DING2,Junle QU1( ),Hanben NIU1 |
1. Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China 2. State Key Laboratory of Modern Optical Instrumentation, Department of Optical Engineering, Zhejiang University, Hangzhou 310027, China |
|
|
|
|
Abstract Doppler optical coherence tomography or optical Doppler tomography (ODT) has been demonstrated to spatially localize flow velocity mapping as well as to obtain images of microstructure of samples simultaneously. In recent decades, spectral domain Doppler optical coherence tomography (OCT) has been applied to observe three-dimensional (3D) vascular distribution. In this study, we developed a spectral domain optical coherence tomography system (SD-OCT) using super luminescent diode (SLD) as light source. The center wavelength of SLD is 835 nm with a 45-nm bandwidth. Theoretically, the transverse resolution, axial resolution and penetration depth of this SD-OCT system are 6.13 μm, 6.84 μm and 3.62 mm, respectively. By imaging mouse model with dorsal skin window chamber, we obtained a series of real-time OCT images and reconstructed 3D images of the specific area inside the dorsal skin window chamber by Amira. As a result, we can obtain the clear and complex distribution images of blood vessels of mouse model.
|
| Keywords
optical coherence tomography (OCT)
mouse
dorsal skin window chamber
vascular distribution
|
|
Corresponding Author(s):
Peng LI
|
|
Just Accepted Date: 11 March 2015
Online First Date: 01 April 2015
Issue Date: 24 June 2015
|
|
| 1 |
Huang D, Swanson E A, Lin C P, Schuman J S, Stinson W G, Chang W, Hee M R, Flotte T, Gregory K, Puliafito C A, Fujimoto J G. Optical coherence tomography. Science, 1991, 254(5035): 1178–1181
https://doi.org/10.1126/science.1957169
pmid: 1957169
|
| 2 |
Fujimoto J G, Brezinski M E, Tearney G J, Boppart S A, Bouma B, Hee M R, Southern J F, Swanson E A. Optical biopsy and imaging using optical coherence tomography. Nature Medicine, 1995, 1(9): 970–972
https://doi.org/10.1038/nm0995-970
pmid: 7585229
|
| 3 |
de Boer J F, Cense B, Park B H, Pierce M C, Tearney G J, Bouma B E. Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Optics Letters, 2003, 28(21): 2067–2069
https://doi.org/10.1364/OL.28.002067
pmid: 14587817
|
| 4 |
Leitgeb R, Hitzenberger C, Fercher A. Performance of fourier domain vs. time domain optical coherence tomography. Optics Express, 2003, 11(8): 889–894
https://doi.org/10.1364/OE.11.000889
pmid: 19461802
|
| 5 |
Choma M, Sarunic M, Yang C, Izatt J. Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Optics Express, 2003, 11(18): 2183–2189
https://doi.org/10.1364/OE.11.002183
pmid: 19466106
|
| 6 |
Fercher A F, Hitzenberger C K, Kamp G, El-Zaiat S Y. Measurement of intraocular distances by backscattering spectral interferometry. Optics Communications, 1995, 117(1-2): 43–48
https://doi.org/10.1016/0030-4018(95)00119-S
|
| 7 |
Golubovic B, Bouma B E, Tearney G J, Fujimoto J G. Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+:forsterite laser. Optics Letters, 1997, 22(22): 1704–1706
https://doi.org/10.1364/OL.22.001704
pmid: 18188341
|
| 8 |
Chinn S R, Swanson E A, Fujimoto J G. Optical coherence tomography using a frequency-tunable optical source. Optics Letters, 1997, 22(5): 340–342
https://doi.org/10.1364/OL.22.000340
pmid: 18183195
|
| 9 |
Chen Z, Zhao Y, Srinivas S M, Nelson J S, Prakash N, Frostig R D. Optical Doppler tomography. IEEE Journal of Selected Topics in Quantum Electronics, 1999, 5(4): 1134–1142
|
| 10 |
Hee M R, Huang D, Swanson E A, Fujimoto J G. Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging. Journal of the Optical Society of America B, Optical Physics, 1992, 9(6): 903–908
https://doi.org/10.1364/JOSAB.9.000903
|
| 11 |
Xu C, Ye J, Marks D L, Boppart S A. Near-infrared dyes as contrast-enhancing agents for spectroscopic optical coherence tomography. Optics Letters, 2004, 29(14): 1647–1649
https://doi.org/10.1364/OL.29.001647
pmid: 15309847
|
| 12 |
Divetia A, Hsieh T, Zhang J, Chen Z, Bachman M, Li G. Dynamically focused optical coherence tomography for endoscopic applications. Applied Physics Letters, 2005, 86(10): 103902
|
| 13 |
Xiang S H, Chen Z, Zhao Y, Nelson J S. Multichannel signal detection of optical coherence tomography with different frequency bands. In: Proceedings of Conference on Lasers and Electro-Optics. 2000, 418
|
| 14 |
Rollins A M, Yazdanfar S, Barton J K, Izatt J A. Real-time in vivo color Doppler optical coherence tomography. Journal of Biomedical Optics, 2002, 7(1): 123–129
https://doi.org/10.1117/1.1428291
pmid: 11818020
|
| 15 |
Wiesauer K, Pircher M, G?tzinger E, Bauer S, Engelke R, Ahrens G, Grützner G, Hitzenberger C, Stifter D. En-face scanning optical coherence tomography with ultra-high resolution for material investigation. Optics Express, 2005, 13(3): 1015–1024
https://doi.org/10.1364/OPEX.13.001015
pmid: 19494965
|
| 16 |
Feldchtein F, Gelikonov V, Iksanov R, Gelikonov G, Kuranov R, Sergeev A, Gladkova N, Ourutina M, Reitze D, Warren J. In vivo OCT imaging of hard and soft tissue of the oral cavity. Optics Express, 1998, 3(6): 239–250
https://doi.org/10.1364/OE.3.000239
pmid: 19384366
|
| 17 |
Shao Y, He Y, Ma H, Wang S, Zhang Y. Study on mildew infecting skin of naked mouse by optical coherence tomography. Acta Laser Biology Sinica, 2006, 15(5): 536–539 (in Chinese)
|
| 18 |
Tomlins P H, Wang R K. Theory, developments and applications of optical coherence tomography. Journal of Physics D, Applied Physics, 2005, 38(15): 2519–2535
https://doi.org/10.1088/0022-3727/38/15/002
|
| 19 |
Swanson E A, Izatt J A, Hee M R, Huang D, Lin C P, Schuman J S, Puliafito C A, Fujimoto J G. In vivo retinal imaging by optical coherence tomography. Optics Letters, 1993, 18(21): 1864–1866
https://doi.org/10.1364/OL.18.001864
pmid: 19829430
|
| 20 |
Zhao Y, Chen Z, Saxer C, Xiang S, de Boer J F, Nelson J S. Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity. Optics Letters, 2000, 25(2): 114–116
https://doi.org/10.1364/OL.25.000114
pmid: 18059800
|
| 21 |
Zhao Y, Chen Z, Saxer C, Shen Q, Xiang S, de Boer J F, Nelson J S. Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow. Optics Letters, 2000, 25(18): 1358–1360
https://doi.org/10.1364/OL.25.001358
pmid: 18066216
|
| 22 |
Westphal V, Yazdanfar S, Rollins A M, Izatt J A. Real-time, high velocity-resolution color Doppler optical coherence tomography. Optics Letters, 2002, 27(1): 34–36
https://doi.org/10.1364/OL.27.000034
pmid: 18007707
|
| 23 |
Yang V X D, Gordon M, Seng-Yue E, Lo S, Qi B, Pekar J, Mok A, Wilson B, Vitkin I. High speed, wide velocity dynamic range Doppler optical coherence tomography (Part II): imaging in vivo cardiac dynamics of Xenopus laevis. Optics Express, 2003, 11(14): 1650–1658
https://doi.org/10.1364/OE.11.001650
pmid: 19466043
|
| 24 |
Ding Z, Zhao Y, Ren H, Nelson J, Chen Z. Real-time phase-resolved optical coherence tomography and optical Doppler tomography. Optics Express, 2002, 10(5): 236–245
https://doi.org/10.1364/OE.10.000236
pmid: 19436351
|
| 25 |
Yazdanfar S, Rollins A M, Izatt J A. Imaging and velocimetry of the human retinal circulation with color Doppler optical coherence tomography. Optics Letters, 2000, 25(19): 1448–1450
https://doi.org/10.1364/OL.25.001448
pmid: 18066244
|
| 26 |
Yazdanfar S, Rollins A M, Izatt J A.In vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography. Archives of Ophthalmology, 2003, 121(2): 235–239
https://doi.org/10.1001/archopht.121.2.235
pmid: 12583790
|
| 27 |
Nassif N, Cense B, Park B H, Yun S H, Chen T C, Bouma B E, Tearney G J, de Boer J F. In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography. Optics Letters, 2004, 29(5): 480–482
https://doi.org/10.1364/OL.29.000480
pmid: 15005199
|
| 28 |
Leitgeb R, Schmetterer L, Drexler W, Fercher A, Zawadzki R, Bajraszewski T. Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography. Optics Express, 2003, 11(23): 3116–3121
https://doi.org/10.1364/OE.11.003116
pmid: 19471434
|
| 29 |
White B, Pierce M, Nassif N, Cense B, Park B, Tearney G, Bouma B, Chen T, de Boer J. In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography. Optics Express, 2003, 11(25): 3490–3497
https://doi.org/10.1364/OE.11.003490
pmid: 19471483
|
| 30 |
Chen T C, Cense B, Pierce M C, Nassif N, Park B H, Yun S H, White B R, Bouma B E, Tearney G J, de Boer J F. Spectral domain optical coherence tomography: ultra-high speed, ultra-high resolution ophthalmic imaging. Archives of Ophthalmology, 2005, 123(12): 1715–1720
https://doi.org/10.1001/archopht.123.12.1715
pmid: 16344444
|
| 31 |
Makita S, Hong Y, Yamanari M, Yatagai T, Yasuno Y. Optical coherence angiography. Optics Express, 2006, 14(17): 7821–7840
https://doi.org/10.1364/OE.14.007821
pmid: 19529151
|
| 32 |
Wang R K, Jacques S L, Ma Z, Hurst S, Hanson S R, Gruber A. Three dimensional optical angiography. Optics Express, 2007, 15(7): 4083–4097
https://doi.org/10.1364/OE.15.004083
pmid: 19532651
|
| 33 |
Vakoc B J, Lanning R M, Tyrrell J A, Padera T P, Bartlett L A, Stylianopoulos T, Munn L L, Tearney G J, Fukumura D, Jain R K, Bouma B E. Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging. Nature Medicine, 2009, 15(10): 1219–1223
https://doi.org/10.1038/nm.1971
pmid: 19749772
|
| 34 |
Cardon S Z, Oestermeyer C F, Bloch E H. Effect of oxygen on cyclic red blood cell flow in unanesthetized mammalian striated muscle as determined by microscopy. Microvascular Research, 1970, 2(1): 67–76
https://doi.org/10.1016/0026-2862(70)90052-X
pmid: 5523915
|
| 35 |
Sandison J C. The transparent chamber of the rabbit’s ear, giving a complete description of improved technic of construction and introduction, and general account of growth and behavior of living cells and tissues as seen with the microscope. American Journal of Anatomy, 1928, 41(3): 447–473
https://doi.org/10.1002/aja.1000410303
|
| 36 |
Laschke M W, Menger M D. In vitro and in vivo approaches to study angiogenesis in the pathophysiology and therapy of endometriosis. Human Reproduction Update, 2007, 13(4): 331–342
https://doi.org/10.1093/humupd/dmm006
pmid: 17347159
|
| 37 |
Yuan F, Chen Y, Dellian M, Safabakhsh N, Ferrara N, Jain R K. Time-dependent vascular regression and permeability changes in established human tumor Xenografts induced by an anti-vascular endothelial growth factor/vascular permeability factor antibody. Proceeding of the National Academy of Sciences, 1996, 93(25): 14765–14770
|
| 38 |
Huang D, Swanson E A, Lin C P, Schuman J S, Stinson W G, Chang W, Hee M R, Flotte T, Gregory K, Puliafito C A. Optical coherence tomography. Massachusetts Institute of Technology, Whitaker College of Health Sciences and Technology, 1993
|
| 39 |
Povazay B, Bizheva K, Unterhuber A, Hermann B, Sattmann H, Fercher A F, Drexler W, Apolonski A, Wadsworth W J, Knight J C, Russell P S, Vetterlein M, Scherzer E. Submicrometer axial resolution optical coherence tomography. Optics Letters, 2002, 27(20): 1800–1802
https://doi.org/10.1364/OL.27.001800
pmid: 18033368
|
| 40 |
Leitgeb R, Drexler W, Unterhuber A, Hermann B, Bajraszewski T, Le T, Stingl A, Fercher A. Ultrahigh resolution Fourier domain optical coherence tomography. Optics Express, 2004, 12(10): 2156–2165
https://doi.org/10.1364/OPEX.12.002156
pmid: 19475051
|
| 41 |
Zhou J. Experimental observation on mice using dose phenobarbital sodium. Shanghai Laboratory Animal Science, 1988, 3: 139 (in Chinese)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|