Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2015, Vol. 8 Issue (4) : 351-378    https://doi.org/10.1007/s12200-015-0481-3
REVIEW ARTICLE
Laser-based micro/nanofabrication in one, two and three dimensions
Wei XIONG1,Yunshen ZHOU1,Wenjia HOU1,Lijia JIANG1,Masoud MAHJOURI-SAMANI1,Jongbok PARK1,Xiangnan HE1,Yang GAO1,Lisha FAN1,Tommaso BALDACCHINI2,Jean-Francois SILVAIN3,Yongfeng LU1,*()
1. Department of Electrical Engineering, University of Nebraska-Lincoln, Lincoln NE 68588, USA
2. Technology and Applications Center, Newport Corporation, Irvine, CA 92606, USA
3. Institute of Chemistry of Condensed Matter of Bordeaux, ICMCB-CNRS 87, Avenue du Docteur Albert Schweitzer F-33608 Pessac Cedex, France
 Download: PDF(9304 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Advanced micro/nanofabrication of functional materials and structures with various dimensions represents a key research topic in modern nanoscience and technology and becomes critically important for numerous emerging technologies such as nanoelectronics, nanophotonics and micro/nanoelectromechanical systems. This review systematically explores the non-conventional material processing approaches in fabricating nanomaterials and micro/nanostructures of various dimensions which are challenging to be fabricated via conventional approaches. Research efforts are focused on laser-based techniques for the growth and fabrication of one-dimensional (1D), two-dimensional (2D) and three-dimensional (3D) nanomaterials and micro/nanostructures. The following research topics are covered, including: 1) laser-assisted chemical vapor deposition (CVD) for highly efficient growth and integration of 1D nanomaterial of carbon nanotubes (CNTs), 2) laser direct writing (LDW) of graphene ribbons under ambient conditions, and 3) LDW of 3D micro/nanostructures via additive and subtractive processes. Comparing with the conventional fabrication methods, the laser-based methods exhibit several unique advantages in the micro/nanofabrication of advanced functional materials and structures. For the 1D CNT growth, the laser-assisted CVD process can realize both rapid material synthesis and tight control of growth location and orientation of CNTs due to the highly intense energy delivery and laser-induced optical near-field effects. For the 2D graphene synthesis and patterning, room-temperature and open-air fabrication of large-scale graphene patterns on dielectric surface has been successfully realized by a LDW process. For the 3D micro/nanofabrication, the combination of additive two-photon polymerization (TPP) and subtractive multi-photon ablation (MPA) processes enables the fabrication of arbitrary complex 3D micro/nanostructures which are challenging for conventional fabrication methods. Considering the numerous unique advantages of laser-based techniques, the laser-based micro/nanofabrication is expected to play a more and more important role in the fabrication of advanced functional micro/nano-devices.

Keywords laser material interaction      carbon nanotubes (CNTs)      micro/nanofabrication      two-photon polymerization (TPP)      graphene      multi-photon ablation (MPA)     
Corresponding Author(s): Yongfeng LU   
Just Accepted Date: 11 February 2015   Issue Date: 24 November 2015
 Cite this article:   
Wei XIONG,Yunshen ZHOU,Wenjia HOU, et al. Laser-based micro/nanofabrication in one, two and three dimensions[J]. Front. Optoelectron., 2015, 8(4): 351-378.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-015-0481-3
https://academic.hep.com.cn/foe/EN/Y2015/V8/I4/351
Fig.1  

Summary of the synthetic methods for growing CNTs [3640]

Fig.3  

(a) Schematic diagram of the LCVD process for growing CNTs; (b) photo of the home-built LCVD system

Fig.4  

Vertically aligned CNT arrays grown by the LCVD process without applying electrical bias on the Ru electrodes. Scale bar: (a) 50 μm; (b) 10 μm;(c) 5 μm; (d) 2 μm.

Fig.5  

(a) Horizontally aligned CNT arrays grown by the LCVD process by applying electrical bias on the Ru electrodes; (b) a typical Raman spectrum of the as-grown CNTs [52]

Fig.6  

Numerical simulation results of (a) electrical field and (b) heat distributions around Ru tips [30]

Fig.7  

Numerical simulation results of electrical field distribution in the Ru tip structure under the laser irradiation with (a) vertical and (b) horizontal E field polarizations; and the simulation results of heat distribution under the laser beam with (c) vertical (d) horizontal E field polarizations [57]

Fig.8  

HFSS simulation results demonstrating the influence of the metallic film thickness on (a) electric near field and (b) localized heating around the tip apexes, respectively [58]

Fig.9  

(a) Schematic of the LCVD fabrication process; (b) illustration of an SWNT-integrated bridge structure [57]

Fig.10  

(a) SEM micrograph of the electrode pattern containing two pairs of tip-shaped electrodes; (b) SEM micrograph of the zoomed-in region of the electrode tips; (c) and (d) zoomed-in SEM micrographs showing the SWNT-integrated bridge structures in a side view and top view, respectively. The arrows in (c) and (d) indicate the location of the SWNT bridge [57]

Fig.11  

(a) SEM micrograph of the electrode pattern containing four pairs of tip-shaped electrodes; (b) and (c) SEM micrographs of the square regions in (a), showing the SWNT-integrated bridge structures [57]

Fig.12  

(a) SEM micrograph of the electrode pattern containing cross-shaped electrodes; (b) and (c) SEM micrographs of the square regions in (a), showing the SWNT-integrated bridge structures [57]

Fig.13  

Illustration of the direct writing process for fabricating graphene nanoelectronics [78]

Fig.14  

Two existing fabrication methods of LDW graphene ribbons. (a) Laser-assisted reduction of GO [79]; (b) laser-assisted CVD on Ni foil [81]

Fig.15  

(a) Experimental schematic of the fabrication process via LDW of graphene patterns in ambient environment; optical (b) and Raman (c) images of the as-fabricated graphene patterns deposited on glass substrates [83]

Fig.16  

Characterization of the as-fabricated graphene patterns on glass substrates. Optical micrographs of (a) “Graphene” text pattern; (b) a graphene spiral pattern; (c) arrays of graphene lines; (d) NAND circuit pattern; (e) SEM micrograph of graphene line; (f) typical Raman spectrum of the graphene patterns; (g) TEM micrograph of the graphene transferred on a Cu grid; (h) optical transmittance spectrum of the graphene film on a glass substrate fabricated by the LDW method [83]

Fig.17  

Electrical characterization of graphene devices fabricated by the LDW method. (a) Optical micrograph of a four-terminal device for sheet resistance measurements; (b) I-V curve of the four-terminal electrical device with eight graphene straight line channels as shown in (a), the inset show an optical micrograph of one graphene channel between two Au contacts; (c) optical micrograph of electrical device with Greek-cross graphene pattern for Hall measurements. The insets in (a) and (c) show the zoomed-out optical micrographs of the parallel line and cross-bar graphene devices, respectively [83]

Fig.18  

Flow chart of large-scale fabrication of graphene patterns toward the manufacture of graphene-based integrated circuits. (a) IC layout in the GDSII format; (b) an extracted metal layer layout in the GWL format; (c) fabricated graphene patterns on a glass substrate [83]

Fig.19  

Characterization of voxel sizes in the additive TPP process. (a) Lateral and (b) vertical voxel sizes as a function of laser scanning speed at fixed laser power

Fig.20  

Dependence of surface quality of 3D structures on different laser scanning parameters: parallel linear scanning mode of (a) 200-nm step; (b) 100-nm step; (c) 20-nm step, 1 h processing time; (d) annular scanning mode, 10-nm step, 20 min processing time

Fig.21  

SEM images of various photonic crystal structures fabricated by additive TPP micro/nanofabrication. (a) Woodpile structures; (b) spiral arrange structures; (c) pyramid structures

Fig.22  

SEM images of micro-lens arrays and optical cavity structures fabricated by additive TPP micro/nanofabrication. (a) Vertically-aligned aspheric lens array; (b) horizontally-aligned aspheric lens array; (c) vertically-aligned bi-convex lens array; (d) horizontally-aligned bi-convex lens array; (e) disk-shaped optical cavity for dye laser application; (f) spherical micro-lens array

Fig.23  

SEM images of some examples of complex 3D structures fabricated by additive TPP micro/nanofabrication. (a) Side-view of a 3D NSF logo; (b) top-view of 3D NSF logo; (c) 3D Nebraska-Huskers logo

Fig.24  

Micro/nanostructures fabricated by the subtractive MPA process in cured IP-L polymer films. (a) SEM micrograph of nano holes, the inset is a magnified image of a hole with a sharp edge and a pore diameter of 180 nm; (b) optical image of five micro-sized interconnected hollow rings resembling Olympic rings embedded in a cured IP-L polymer film created by MPA [119]

Fig.25  

Schematic diagram of the comprehensive 3D micro/nanofabrication combining additive TPP and subtractive MPA processes [119]

Fig.26  

SEM images of polymer fibers fabricated by the “TPP+MPA” method. (a), (c), (e) The arrays of fibers created by TPP with 2, 1 and 0.5 mm in diameters, respectively; (b), (d), (f) the arrays of fibers with periodic hole patterns after the MPA process [26].

Fig.27  

2D meshed micro-fluidic channels inside IPL polymer fabricated by the “TPP+MPA” method. (a) Optical micrograph of a typical micro-fluidic channel inside a polymer cube; (b) SEM cross-section image of the micro-fluidic channel; (c) optical micrograph of the fabricated meshed micro-fluidic channels; (d) and (e) demonstrate the liquid flow inside the meshed channels at T = 0 and T = 10 s, respectively. The dash line shows the pathway of liquid flow through the meshed micro-fluidic channels [26]

Fig.28  

3D spiral micro-fluidic channels inside a IPL polymer cube fabricated by the “TPP+MPA” method. (a) Schematic of the 3D spiral micro-fluidic channel; (b), (c), and (d) show the X-Y cross-sectional view of a spiral channel under a transmission-mode optical microscope at different focal planes (scale bar: 10 µm). The coil diameter of the spiral channel is 20 µm; (e) array of spiral micro-fluidic channels fabricated inside a polymer cube with a coil diameter of 5 µm and an inter-channel spacing of 3 µm [26]

Tab.1  

Current existing methods for assembling CNTs [4347]

1 Wiederrecht  G. Handbook of Nanofabrication. Boston, MA: Elsevier, 2009
2 Quake  S R, Scherer  A. From micro- to nanofabrication with soft materials. Science, 2000, 290(5496): 1536–1540
https://doi.org/10.1126/science.290.5496.1536 pmid: 11090344
3 Henzie  J, Lee  J, Lee  M H, Hasan  W, Odom  T W. Nanofabrication of plasmonic structures. Annual Review of Physical Chemistry, 2009, 60(1): 147–165
https://doi.org/10.1146/annurev.physchem.040808.090352 pmid: 18928404
4 Zhang  G Q, van Roosmalen  A J. The changing landscape of micro/nanoelectronics. In: More than Moore: Creating High Value Micro/Nanoelectronics Systems. New York: Springer US, 2009, 1–31
5 Zhang  G Q, VanRoosmalen  A J. More than Moore: Creating High Value Micro/Nanoelectronics Systems. New York: Springer US, 2009
6 Liang  J, Chen  Y, Xu  Y, Liu  Z, Zhang  L, Zhao  X, Zhang  X, Tian  J, Huang  Y, Ma  Y, Li  F. Toward all-carbon electronics: fabrication of graphene-based flexible electronic circuits and memory cards using maskless laser direct writing. ACS Applied Materials & Interfaces, 2010, 2(11): 3310–3317
https://doi.org/10.1021/am1007326 pmid: 21058687
7 Meixner  A J. Nanophotonics, nano-optics and nanospectroscopy. Beilstein Journal of Nanotechnology, 2011, 2: 499–500
8 Vasa  P, Ropers  C, Pomraenke  R, Lienau  C. Ultra-fast nano-optics. Laser & Photonics Reviews. 2009, 3(6): 483–507
9 Stockman  M. Light-emitting devices: from nano-optics to street lights. Nature Materials, 2004, 3(7): 423–424
https://doi.org/10.1038/nmat1169 pmid: 15229487
10 Koch  S W, Knorr  A. Applied physics. Optics in the nano-world. Science, 2001, 293(5538): 2217–2218
https://doi.org/10.1126/science.1065119 pmid: 11567128
11 Fara  L, Yamaguchi  M. Advanced Solar Cell Materials, Technology, Modeling and Simulation. Hershey, PA: Engineering Science Reference, 2013
12 Rau  U, Abou-Ras  D, Kirchartz  T. Advanced Characterization Techniques for Thin Film Solar Cells. Weinheim, Germany: Wiley-VCH, 2011
13 Zaghloul  U, Papaioannou  G, Bhushan  B, Coccetti  F, Pons  P, Plana  R. On the reliability of electrostatic NEMS/MEMS devices: review of present knowledge on the dielectric charging and stiction failure mechanisms and novel characterization methodologies. Microelectronics and Reliability, 2011, 51(9−11): 1810–1818
https://doi.org/10.1016/j.microrel.2011.07.081
14 Roncaglia  A, Ferri  M. Thermoelectric materials in MEMS and NEMS: a review. Science of Advanced Materials, 2011, 3(3): 401–419
15 Kumar  S, Cola  B A, Jackson  R, Graham  S. A review of carbon nanotube ensembles as flexible electronics and advanced packaging materials. Journal of Electronic Packaging, 2011, 133(2): 020906
https://doi.org/10.1115/1.4004220
16 Palacios  T. Graphene electronics: thinking outside the silicon box. Nature Nanotechnology, 2011, 6(8): 464–465
https://doi.org/10.1038/nnano.2011.125 pmid: 21814230
17 Sinitskii  A, Tour  J M. Graphene electronics, unzipped. IEEE Spectrum, 2010, 47(11): 28–33
https://doi.org/10.1109/MSPEC.2010.5605889
18 Geim  A K, Novoselov  K S. The rise of graphene. Nature Materials, 2007, 6(3): 183–191
https://doi.org/10.1038/nmat1849 pmid: 17330084
19 Danilevičius  P, Rekstyte  S, Balciunas  E, Kraniauskas  A, Širmenis  R, Baltriukienė  D, Bukelskienė  V, Gadonas  R, Sirvydis  V, Piskarskas  A, Malinauskas  M. Laser 3D micro/nanofabrication of polymers for tissue engineering applications. Optics & Laser Technology, 2013, 45: 518–524
https://doi.org/10.1016/j.optlastec.2012.05.038
20 Zhang  Y L, Chen  Q D, Xia  H, Sun  H B. Designable 3D nanofabrication by femtosecond laser direct writing. Nano Today, 2010, 5(5): 435–448
https://doi.org/10.1016/j.nantod.2010.08.007
21 Porro  S, Musso  S, Giorcelli  M, Chiodoni  A, Tagliaferro  A. Optimization of a thermal-CVD system for carbon nanotube growth. Physica E, Low-Dimensional Systems and Nanostructures, 2007, 37(1−2): 16–20
https://doi.org/10.1016/j.physe.2006.07.010
22 Shi  F, Wang  Y, Xue  C. Synthesis of GaN nanowires by CVD method: effect of reaction temperature. Journal of Experimental Nanoscience, 2011, 6(3): 238–247
https://doi.org/10.1080/17458080.2010.493183
23 Bae  S, Kim  H, Lee  Y, Xu  X, Park  J S, Zheng  Y, Balakrishnan  J, Lei  T, Kim  H R, Song  Y I, Kim  Y J, Kim  K S, Özyilmaz  B, Ahn  J H, Hong  B H, Iijima  S. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology, 2010, 5(8): 574–578
https://doi.org/10.1038/nnano.2010.132 pmid: 20562870
24 Reina  A, Jia  X, Ho  J, Nezich  D, Son  H, Bulovic  V, Dresselhaus  M S, Kong  J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Letters, 2009, 9(1): 30–35
https://doi.org/10.1021/nl801827v pmid: 19046078
25 Hong  J, Jang  J. Micropatterning of graphene sheets: recent advances in techniques and applications. Journal of Materials Chemistry, 2012, 22(17): 8179–8191
https://doi.org/10.1039/c2jm00102k
26 Xiong  W, Zhou  Y S, He  X N, Gao  Y, Mahjouri-Samani  M, Jiang  L, Baldacchini  T, Lu  Y F. Simultaneous  additive and subtractive three-dimensional nanofabrication using integrated two-photon polymerization and multiphoton ablation. Light Science & Applications, 2012, 1(4): e6
27 Shi  J, Lu  Y F, Wang  H, Yi  K J, Lin  Y S, Zhang  R, Liou  S H. Synthesis of suspended carbon nanotubes on silicon inverse-opal structures by laser-assisted chemical vapour deposition. Nanotechnology, 2006, 17(15): 3822–3826
https://doi.org/10.1088/0957-4484/17/15/036
28 Xie  Z, Zhou  Y, He  X, Gao  Y, Park  J, Ling  H, Jiang  L, Lu  Y. Fast growth of diamond crystals in open air by combustion synthesis with resonant laser energy coupling. Crystal Growth & Design, 2010, 10(4): 1762–1766
https://doi.org/10.1021/cg9014515
29 Park  J B, Jeong  M S, Jeong  S H. Direct writing of carbon nanotube patterns by laser-induced chemical vapor deposition on a transparent substrate. Applied Surface Science, 2009, 255(8): 4526–4530
https://doi.org/10.1016/j.apsusc.2008.11.070
30 Xiong  W, Zhou  Y S, Mahjouri-Samani  M, Yang  W Q, Yi  K J, He  X N, Liou  S H, Lu  Y F. Self-aligned growth of single-walled carbon nanotubes using optical near-field effects. Nanotechnology, 2009, 20(2): 025601
https://doi.org/10.1088/0957-4484/20/2/025601 pmid: 19417270
31 Odom  T W, Huang  J, Kim  P, Lieber  C M. Atomic structure and electronic properties of single-walled carbon nanotubes. Nature, 1998, 391(6662): 62–64
https://doi.org/10.1038/34145
32 Burghard  M, Klauk  H, Kern  K. Carbon-based field-effect transistors for nanoelectronics. Advanced Materials, 2009, 21(25−26): 2586–2600
https://doi.org/10.1002/adma.200803582
33 Bachtold  A, Hadley  P, Nakanishi  T, Dekker  C. Logic circuits with carbon nanotube transistors. Science, 2001, 294(5545): 1317–1320
https://doi.org/10.1126/science.1065824 pmid: 11588220
34 Dai  H. Carbon nanotubes: opportunities and challenges. Surface Science, 2002, 500(1−3): 218–241
https://doi.org/10.1016/S0039-6028(01)01558-8
35 Avouris  P, Chen  J. Nanotube electronics and optoelectronics. Materials Today, 2006, 9(10): 46–54
https://doi.org/10.1016/S1369-7021(06)71653-4
36 Kong  J, Soh  H T, Cassell  A M, Quate  C F, Dai  H. Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature, 1998, 395(6705): 878–881
https://doi.org/10.1038/27632
37 Li  Y, Mann  D, Rolandi  M, Kim  W, Ural  A, Hung  S, Javey  A, Cao  J, Wang  D, Yenilmez  E, Wang  Q, Gibbons  J F, Nishi  Y, Dai  H. Preferential growth of semiconducting single-walled carbon nanotubes by a plasma enhanced CVD method. Nano Letters, 2004, 4(2): 317–321
https://doi.org/10.1021/nl035097c
38 Shi  J, Lu  Y F, Yi  K J, Lin  Y S, Liou  S H, Hou  J B, Wang  X W. Direct synthesis of single-walled carbon nanotubes bridging metal electrodes by laser-assisted chemical vapor deposition. Applied Physics Letters, 2006, 89(8): 083105
https://doi.org/10.1063/1.2338005
39 Thess  A, Lee  R, Nikolaev  P, Dai  H, Petit  P, Robert  J, Xu  C, Lee  Y H, Kim  S G, Rinzler  A G, Colbert  D T, Scuseria  G E, Tomanek  D, Fischer  J E, Smalley  R E. Crystalline ropes of metallic carbon nanotubes. Science, 1996, 273(5274): 483–487
https://doi.org/10.1126/science.273.5274.483 pmid: 8662534
40 Bethune  D S, Kiang  C H, de Vries  M S, Gorman  G, Savoy  R, Vazquez  J, Beyers  R. Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layerwalls. Nature, 1993, 363(6430): 605–607
https://doi.org/10.1038/363605a0
41 Kim  P, Shi  L, Majumdar  A, McEuen  P L. Mesoscopic thermal transport and energy dissipation in carbon nanotubes. Physica B, Condensed Matter, 2002, 323(1−4): 67–70
https://doi.org/10.1016/S0921-4526(02)00969-9
42 Ural  A, Li  Y, Dai  H. Electric-field-aligned growth of single-walled carbon nanotubes on surfaces. Applied Physics Letters, 2002, 81(18): 3464–3466
https://doi.org/10.1063/1.1518773
43 Falvo  M R, Clary  G J, Taylor  R M 2nd, Chi  V, Brooks  F P Jr, Washburn  S, Superfine  R. Bending and buckling of carbon nanotubes under large strain. Nature, 1997, 389(6651): 582–584
https://doi.org/10.1038/39282 pmid: 9335495
44 Vijayaraghavan  A, Blatt  S, Weissenberger  D, Oron-Carl  M, Hennrich  F, Gerthsen  D, Hahn  H, Krupke  R. Ultra-large-scale directed assembly of single-walled carbon nanotube devices. Nano Letters, 2007, 7(6): 1556–1560
https://doi.org/10.1021/nl0703727 pmid: 17488050
45 Rao  S G, Huang  L, Setyawan  W, Hong  S. Nanotube electronics: large-scale assembly of carbon nanotubes. Nature, 2003, 425(6953): 36–37
https://doi.org/10.1038/425036a pmid: 12955130
46 Zhang  Y, Chang  A, Cao  J, Wang  Q, Kim  W, Li  Y, Morris  N, Yenilmez  E, Kong  J, Dai  H. Electric-field-directed growth of aligned single-walled carbon nanotubes. Applied Physics Letters, 2001, 79(19): 3155–3157
https://doi.org/10.1063/1.1415412
47 Huang  S, Cai  X, Liu  J. Growth of millimeter-long and horizontally aligned single-walled carbon nanotubes on flat substrates. Journal of the American Chemical Society, 2003, 125(19): 5636–5637
https://doi.org/10.1021/ja034475c pmid: 12733894
48 Tans  S J, Devoret  M H, Dai  H, Thess  A, Smalley  R E, Geerligs  L J, Dekker  C. Individual single-wall carbon nanotubes as quantum wires. Nature, 1997, 386(6624): 474–477
https://doi.org/10.1038/386474a0
49 Xi  N, Szu  H, Buss  J, Mack  I. Carbon nanotube based spectrum infrared detectors. In: Proceedings of SPIE 5987, Electro-Optical and Infrared Systems: Technology and Applications II. 2005, 59870M
50 Bockrath  M, Cobden  D H, McEuen  P L, Chopra  N G, Zettl  A, Thess  A, Smalley  R E. Single-electron transport in ropes of carbon nanotubes. Science, 1997, 275(5308): 1922–1925
https://doi.org/10.1126/science.275.5308.1922 pmid: 9072967
51 Maehashi  K, Ohno  Y, Inoue  K, Matsumoto  K. Laser-resonance chirality selection in single-walled carbon nanotubes. AIP Conference Proceedings, 2005, 772(1): 1023–1024
52 Xiong  W, Gao  Y, Mahjouri-Samani  M, Zhou  Y S, Mitchell  M, J B Park, Lu  Y F. Laser assisted fabrication for controlled single-walled carbon nanotube synthesis and processing. Chinese Journal of Lasers, 2009, 36(12): 3125–3132
https://doi.org/10.3788/CJL20093612.3125
53 Hayazawa  N, Yano  T, Watanabe  H, Inouye  Y, Kawata  S. Detection of an individual single-wall carbon nanotube by tip-enhanced near-field Raman spectroscopy. Chemical Physics Letters, 2003, 376(1−2): 174–180
https://doi.org/10.1016/S0009-2614(03)00883-2
54 Novotny  L, Bian  R X, Xie  X S. Theory of nanometric optical tweezers. Physical Review Letters, 1997, 79(4): 645–648
https://doi.org/10.1103/PhysRevLett.79.645
55 Downes  A, Salter  D, Elfick  A. Heating effects in tip-enhanced optical microscopy. Optics Express, 2006, 14(12): 5216–5222
https://doi.org/10.1364/OE.14.005216 pmid: 19516687
56 Yao  Y, Li  Q, Zhang  J, Liu  R, Jiao  L, Zhu  Y T, Liu  Z. Temperature-mediated growth of single-walled carbon-nanotube intramolecular junctions. Nature Materials, 2007, 6(4): 283–286
https://doi.org/10.1038/nmat1865 pmid: 17369833
57 Zhou  Y S, Xiong  W, Gao  Y, Mahjouri-Samani  M, Mitchell  M, Jiang  L, Lu  Y F. Towards carbon-nanotube integrated devices: optically controlled parallel integration of single-walled carbon nanotubes. Nanotechnology, 2010, 21(31): 315601
https://doi.org/10.1088/0957-4484/21/31/315601 pmid: 20622296
58 Xiong  W, Zhou  Y S, Mahjouri-Samani  M, Yang  W Q, Yi  K J, He  X N, Lu  Y F. Controlled-growth of single-walled carbon nanotubes using optical near-field effects. In: Proceedings of SPIE 7202, Laser-based Micro- and Nanopackaging and Assembly III. 2009, 720209
https://doi.org/10.1117/12.808629
59 Cantoro  M, Hofmann  S, Pisana  S, Scardaci  V, Parvez  A, Ducati  C, Ferrari  A C, Blackburn  A M, Wang  K Y, Robertson  J. Catalytic chemical vapor deposition of single-wall carbon nanotubes at low temperatures. Nano Letters, 2006, 6(6): 1107–1112
https://doi.org/10.1021/nl060068y pmid: 16771562
60 van Dorp  W F, Hagen  C W. A critical literature review of focused electron beam induced deposition. Journal of Applied Physics, 2008, 104(8): 081301
https://doi.org/10.1063/1.2977587
61 Brintlinger  T, Chen  Y, Dürkop  T, Cobas  E, Fuhrer  M S, Barry  J D, Melngailis  J. Rapid imaging of nanotubes on insulating substrates. Applied Physics Letters, 2002, 81(13): 2454–2456
https://doi.org/10.1063/1.1509113
62 Zhou  Y S, Yi  K J, Mahjouri-Samani  M, Xiong  W, Lu  Y F, Liou  S H. Image contrast enhancement in field-emission scanning electron microscopy of single-walled carbon nanotubes. Applied Surface Science, 2009, 255(7): 4341–4346
https://doi.org/10.1016/j.apsusc.2008.11.035
63 Homma  Y, Suzuki  S, Kobayashi  Y, Nagase  M, Takagi  D. Mechanism of bright selective imaging of single-walled carbon nanotubes on insulators by scanning electron microscopy. Applied Physics Letters, 2004, 84(10): 1750–1752
https://doi.org/10.1063/1.1667608
64 Novoselov  K S, Geim  A K, Morozov  S V, Jiang  D, Katsnelson  M I, Grigorieva  I V, Dubonos  S V, Firsov  A A. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005, 438(7065): 197–200
https://doi.org/10.1038/nature04233 pmid: 16281030
65 Novoselov  K S, Jiang  Z, Zhang  Y, Morozov  S V, Stormer  H L, Zeitler  U, Maan  J C, Boebinger  G S, Kim  P, Geim  A K. Room-temperature quantum Hall effect in graphene. Science, 2007, 315(5817): 1379
https://doi.org/10.1126/science.1137201 pmid: 17303717
66 Lee  C, Wei  X, Kysar  J W, Hone  J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321(5887): 385–388
https://doi.org/10.1126/science.1157996 pmid: 18635798
67 Seol  J H, Jo  I, Moore  A L, Lindsay  L, Aitken  Z H, Pettes  M T, Li  X, Yao  Z, Huang  R, Broido  D, Mingo  N, Ruoff  R S, Shi  L. Two-dimensional phonon transport in supported graphene. Science, 2010, 328(5975): 213–216
https://doi.org/10.1126/science.1184014 pmid: 20378814
68 Vakil  A, Engheta  N. Transformation optics using graphene. Science, 2011, 332(6035): 1291–1294
https://doi.org/10.1126/science.1202691 pmid: 21659598
69 Nair  R R, Blake  P, Grigorenko  A N, Novoselov  K S, Booth  T J, Stauber  T, Peres  N M R, Geim  A K. Fine structure constant defines visual transparency of graphene. Science, 2008, 320(5881): 1308
https://doi.org/10.1126/science.1156965 pmid: 18388259
70 Li  X, Zhu  H, Wang  K, Cao  A, Wei  J, Li  C, Jia  Y, Li  Z, Li  X, Wu  D. Graphene-on-silicon Schottky junction solar cells. Advanced materials (Deerfield Beach, Fla.), 2010, 22(25): 2743–2748
71 Park  H, Rowehl  J A, Kim  K K, Bulovic  V, Kong  J. Doped graphene electrodes for organic solar cells. Nanotechnology, 2010, 21(50): 505204
https://doi.org/10.1088/0957-4484/21/50/505204 pmid: 21098945
72 Feng  L, Wu  L, Wang  J, Ren  J, Miyoshi  D, Sugimoto  N, Qu  X. Detection of a prognostic indicator in early-stage cancer using functionalized graphene-based peptide sensors. Advanced materials (Deerfield Beach, Fla.), 2012, 24(1): 125–131
73 Myung  S, Solanki  A, Kim  C, Park  J, Kim  K S, Lee  K. Graphene-encapsulated nanoparticle-based biosensor for the selective detection of cancer biomarkers. Advanced materials (Deerfield Beach, Fla.), 2011, 23(19): 2221–2225
74 Hwang  J O, Park  J S, Choi  D S, Kim  J Y, Lee  S H, Lee  K E, Kim  Y H, Song  M H, Yoo  S, Kim  S O. Workfunction-tunable, N-doped reduced graphene transparent electrodes for high-performance polymer light-emitting diodes. ACS Nano, 2012, 6(1): 159–167
https://doi.org/10.1021/nn203176u pmid: 22148918
75 Hecht  D S, Hu  L, Irvin  G. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Advanced materials (Deerfield Beach, Fla.), 2011, 23(13): 1482–1513
76 Kalita  G, Matsushima  M, Uchida  H, Wakita  K, Umeno  M. Graphene constructed carbon thin films as transparent electrodes for solar cell applications. Journal of Materials Chemistry, 2010, 20(43): 9713–9717
https://doi.org/10.1039/c0jm01352h
77 Xiong  W, Zhou  Y S, Jiang  L J, Sarkar  A, Mahjouri-Samani  M, Xie  Z Q, Gao  Y, Ianno  N J, Jiang  L, Lu  Y F. Single-step formation of graphene on dielectric surfaces. Advanced materials (Deerfield Beach, Fla.), 2013, 25(4): 630–634
78 Wei  Z, Wang  D, Kim  S, Kim  S Y, Hu  Y, Yakes  M K, Laracuente  A R, Dai  Z, Marder  S R, Berger  C, King  W P, de Heer  W A, Sheehan  P E, Riedo  E. Nanoscale tunable reduction of graphene oxide for graphene electronics. Science, 2010, 328(5984): 1373–1376
https://doi.org/10.1126/science.1188119 pmid: 20538944
79 Zhang  Y, Guo  L, Wei  S, He  Y, Xia  H, Chen  Q, Sun  H, Xiao  F. Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction. Nano Today, 2010, 5(1): 15–20
https://doi.org/10.1016/j.nantod.2009.12.009
80 Zhou  Y, Bao  Q, Varghese  B, Tang  L A L, Tan  C K, Sow  C, Loh  K P. Microstructuring of graphene oxide nanosheets using direct laser writing. Advanced materials (Deerfield Beach, Fla.), 2010, 22(1): 67–71
81 Park  J B, Xiong  W, Gao  Y, Qian  M, Xie  Z Q, Mitchell  M, Zhou  Y S, Han  G H, Jiang  L, Lu  Y F. Fast growth of graphene patterns by laser direct writing. Applied Physics Letters, 2011, 98(12): 123109
https://doi.org/10.1063/1.3569720
82 Park  J B, Xiong  W, Xie  Z Q, Gao  Y, Qian  M, Mitchell  M, Mahjouri-Samani  M, Zhou  Y S, Jiang  L, Lu  Y F. Transparent interconnections formed by rapid single-step fabrication of graphene patterns. Applied Physics Letters, 2011, 99(5): 053103
https://doi.org/10.1063/1.3622660
83 Xiong  W, Zhou  Y S, Hou  W J, Jiang  L J, Gao  Y, Fan  L S, Jiang  L, Silvain  J F, Lu  Y F. Direct writing of graphene patterns on insulating substrates under ambient conditions. Scientific Reports, 2014, 4: 4892
https://doi.org/10.1038/srep04892 pmid: 24809639
84 Ferrari  A C, Meyer  J C, Scardaci  V, Casiraghi  C, Lazzeri  M, Mauri  F, Piscanec  S, Jiang  D, Novoselov  K S, Roth  S, Geim  A K. Raman spectrum of graphene and graphene layers. Physical Review Letters, 2006, 97(18): 187401
https://doi.org/10.1103/PhysRevLett.97.187401 pmid: 17155573
85 Casiraghi  C, Hartschuh  A, Qian  H, Piscanec  S, Georgi  C, Fasoli  A, Novoselov  K S, Basko  D M, Ferrari  A C. Raman spectroscopy of graphene edges. Nano Letters, 2009, 9(4): 1433–1441
https://doi.org/10.1021/nl8032697 pmid: 19290608
86 Kuzmenko  A B, van Heumen  E, Carbone  F, van der Marel  D. Universal optical conductance of graphite. Physical Review Letters, 2008, 100(11): 117401
https://doi.org/10.1103/PhysRevLett.100.117401 pmid: 18517825
87 Rigo  V A, Martins  T B, da Silva  A J R, Fazzio  A, Miwa  R H. Electronic, structural, and transport properties of Ni-doped graphene nanoribbons. Physical Review B: Condensed Matter and Materials Physics, 2009, 79(7): 075435
https://doi.org/10.1103/PhysRevB.79.075435
88 Giovannetti  G, Khomyakov  P A, Brocks  G, Karpan  V M, van den Brink  J, Kelly  P J. Doping graphene with metal contacts. Physical Review Letters, 2008, 101(2): 026803
https://doi.org/10.1103/PhysRevLett.101.026803 pmid: 18764212
89 David  J M, Buehler  M G. A numerical analysis of various cross sheet resistor test structures. Solid-State Electronics, 1977, 20(6): 539–543
https://doi.org/10.1016/S0038-1101(77)81011-3
90 Fang  T, Konar  A, Xing  H, Jena  D. Carrier statistics and quantum capacitance of graphene sheets and ribbons. Applied Physics Letters, 2007, 91(9): 092109
https://doi.org/10.1063/1.2776887
91 Li  X, Cai  W, An  J, Kim  S, Nah  J, Yang  D, Piner  R, Velamakanni  A, Jung  I, Tutuc  E, Banerjee  S K, Colombo  L, Ruoff  R S. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 2009, 324(5932): 1312–1314
https://doi.org/10.1126/science.1171245 pmid: 19423775
92 Gómez-Navarro  C, Weitz  R T, Bittner  A M, Scolari  M, Mews  A, Burghard  M, Kern  K. Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Letters, 2007, 7(11): 3499–3503
https://doi.org/10.1021/nl072090c pmid: 17944526
93 Eda  G, Ball  J, Mattevi  C, Acik  M, Artiglia  L, Granozzi  G, Chabal  Y, Anthopoulos  T D, Chhowalla  M. Partially oxidized graphene as a precursor to graphene. Journal of Materials Chemistry, 2011, 21(30): 11217–11223
https://doi.org/10.1039/c1jm11266j
94 Guo  L, Zhang  Y, Han  D, Jiang  H, Wang  D, Li  X, Xia  H, Feng  J, Chen  Q, Sun  H. Laser-mediated programmable N doping and simultaneous reduction of graphene oxides. Advanced Optical Materials, 2014, 2(2): 120–125
95 Gates  B D, Xu  Q, Love  J C, Wolfe  D B, Whitesides  G M. Unconventional nanofabrication. Annual Review of Materials Research, 2004, 34(1): 339–372
https://doi.org/10.1146/annurev.matsci.34.052803.091100
96 Gates  B D, Xu  Q, Stewart  M, Ryan  D, Willson  C G, Whitesides  G M. New approaches to nanofabrication: molding, printing, and other techniques. Chemical Reviews, 2005, 105(4): 1171–1196
https://doi.org/10.1021/cr030076o pmid: 15826012
97 Dixon  C J, Curtines  O W. Nanotechnology: Nanofabrication, Patterning, and Self Assembly. New York: Nova Science Publishers Inc., 2009
98 Mailly  D. Nanofabrication techniques. European Physical Journal. Special Topics, 2009, 172(1): 333–342
https://doi.org/10.1140/epjst/e2009-01058-x
99 Wiley  B J, Qin  D, Xia  Y. Nanofabrication at high throughput and low cost. ACS Nano, 2010, 4(7): 3554–3559
https://doi.org/10.1021/nn101472p pmid: 20695512
100 Marrian  C R K, Dobisz  E A, Glembocki  O J. Nanofabrication−how small can devices get. R & D Magazine, 1992, 34(2): 123
101 Marrian  C R K, Tennant  D M. Nanofabrication. Journal of Vacuum Science & Technology. A, Vacuum, Surfaces, and Films, 2003, 21(5): S207–S215
https://doi.org/10.1116/1.1600446
102 Gattass  R R, Mazur  E. Femtosecond laser micromachining in transparent materials. Nature Photonics, 2008, 2(4): 219–225
https://doi.org/10.1038/nphoton.2008.47
103 Li  L, Fourkas  J T. Multiphoton polymerization. Materials Today, 2007, 10(6): 30–37
https://doi.org/10.1016/S1369-7021(07)70130-X
104 Park  S H, Yang  D Y, Lee  K S. Two-photon stereolithography for realizing ultraprecise three-dimensional nano/microdevices. Laser & Photonics Reviews, 2009, 3(1−2): 1–11
105 Lee  K, Yang  D, Park  S H, Kim  R H. Recent developments in the use of two-photon polymerization in precise 2D and 3D microfabrications. Polymers for Advanced Technologies, 2006, 17(2): 72–82
https://doi.org/10.1002/pat.664
106 Chong  T C, Hong  M H, Shi  L P. Laser precision engineering: from microfabrication to nanoprocessing. Laser & Photonics Reviews, 2010, 4(1): 123–143
107 Hell  S W, Wichmann  J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Optics Letters, 1994, 19(11): 780–782
https://doi.org/10.1364/OL.19.000780 pmid: 19844443
108 Feigel  A, Veinger  M, Sfez  B, Arsh  A, Klebanov  M, Lyubin  V. Three-dimensional simple cubic woodpile photonic crystals made from chalcogenide glasses. Applied Physics Letters, 2003, 83(22): 4480–4482
https://doi.org/10.1063/1.1631387
109 Gomez  D, Goenaga  I, Lizuain  I, Ozaita  M. Femtosecond laser ablation for microfluidics. Optical Engineering (Redondo Beach, Calif.), 2005, 44(5): 051105
https://doi.org/10.1117/1.1902783
110 Korte  F, Serbin  J, Koch  J, Egbert  A, Fallnich  C, Ostendorf  A, Chichkov  B N. Towards nanostructuring with femtosecond laser pulses. Applied Physics. A, Materials Science & Processing, 2003, 77(2): 229–235
111 Suriano  R, Kuznetsov  A, Eaton  S M, Kiyan  R, Cerullo  G, Osellame  R, Chichkov  B N, Levi  M, Turri  S. Femtosecond laser ablation of polymeric substrates for the fabrication of microfluidic channels. Applied Surface Science, 2011, 257(14): 6243–6250
https://doi.org/10.1016/j.apsusc.2011.02.053
112 Chichkov  B N, Momma  C, Nolte  S, Von Alvensleben  F, Tünnermann  A. Femtosecond, picosecond and nanosecond laser ablation of solids. Applied Physics. A, Materials Science & Processing, 1996, 63(2): 109–115
https://doi.org/10.1007/BF01567637
113 Sun  H B, Xu  Y, Juodkazis  S, Sun  K, Watanabe  M, Matsuo  S, Misawa  H, Nishii  J. Arbitrary-lattice photonic crystals created by multiphoton microfabrication. Optics Letters, 2001, 26(6): 325–327
https://doi.org/10.1364/OL.26.000325 pmid: 18040312
114 Zhou  G, Gu  M. Direct optical fabrication of three-dimensional photonic crystals in a high refractive index LiNbO3 crystal. Optics Letters, 2006, 31(18): 2783–2785
https://doi.org/10.1364/OL.31.002783 pmid: 16936891
115 Gu  M, Jia  B, Li  J, Ventura  M J. Fabrication of three-dimensional photonic crystals in quantum-dot-based materials. Laser & Photonics Reviews, 2010, 4(3): 414–431
116 Fischer  P, McWilliam  A, Paterson  L, Brown  C T A, Sibbett  W, Dholakia  K, MacDonald  M P. Two-photon ablation with 1278 nm laser radiation. Journal of Optics. A, Pure and Applied Optics, 2007, 9(6): S19–S23
https://doi.org/10.1088/1464-4258/9/6/S04
117 Waldbaur  A, Rapp  H, Länge  K, Rapp  B E. Let there be chip-towards rapid prototyping of microfluidic devices: one-step manufacturing processes. Analytical Methods, 2011, 3(12): 2681–2716
118 Goldman  J R, Prybyla  J A. Ultrafast dynamics of laser-excited electron distributions in silicon. Physical Review Letters, 1994, 72(9): 1364–1367
https://doi.org/10.1103/PhysRevLett.72.1364 pmid: 10056694
119 Xiong  W, Zhou  Y S, He  X N, Gao  Y, Mahjouri-Samani  M, Baldacchini  T, Lu  Y F. Three-dimensional sub-wavelength fabrication by integration of additive and subtractive femtosecond-laser direct writing. In: Proceedings of MRS, Volume 1499, 2013
https://doi.org/10.1557/opl.2013.443
120 Zappe  H P. Fundamentals of Micro-Optics. Cambridge, New York: Cambridge University Press, 2010
121 Qin  D, Xia  Y, Whitesides  G M. Soft lithography for micro- and nanoscale patterning. Nature Protocols, 2010, 5(3): 491–502
https://doi.org/10.1038/nprot.2009.234 pmid: 20203666
[1] Chuyu ZHONG, Junying LI, Hongtao LIN. Graphene-based all-optical modulators[J]. Front. Optoelectron., 2020, 13(2): 114-128.
[2] Petri MUSTONEN, David M. A. MACKENZIE, Harri LIPSANEN. Review of fabrication methods of large-area transparent graphene electrodes for industry[J]. Front. Optoelectron., 2020, 13(2): 91-113.
[3] Xiaoying HE,Min XU,Xiangchao ZHANG,Hao ZHANG. A tutorial introduction to graphene-microfiber waveguide and its applications[J]. Front. Optoelectron., 2016, 9(4): 535-543.
[4] Daoxin DAI,Yanlong YIN,Longhai YU,Hao WU,Di LIANG,Zhechao WANG,Liu LIU. Silicon-plus photonics[J]. Front. Optoelectron., 2016, 9(3): 436-449.
[5] Zhenzhou CHENG,Changyuan QIN,Fengqiu WANG,Hao HE,Keisuke GODA. Progress on mid-IR graphene photonics and biochemical applications[J]. Front. Optoelectron., 2016, 9(2): 259-269.
[6] Yee Sin ANG,Qinjun CHEN,Chao ZHANG. Nonlinear optical response of graphene in terahertz and near-infrared frequency regime[J]. Front. Optoelectron., 2015, 8(1): 3-26.
[7] Ran HAO,Jiamin JIN,Xinchang WEI,Xiaofeng JIN,Xianmin ZHANG,Erping LI. Recent developments in graphene-based optical modulators[J]. Front. Optoelectron., 2014, 7(3): 277-292.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed