|
|
|
Laser-based micro/nanofabrication in one, two and three dimensions |
Wei XIONG1,Yunshen ZHOU1,Wenjia HOU1,Lijia JIANG1,Masoud MAHJOURI-SAMANI1,Jongbok PARK1,Xiangnan HE1,Yang GAO1,Lisha FAN1,Tommaso BALDACCHINI2,Jean-Francois SILVAIN3,Yongfeng LU1,*( ) |
1. Department of Electrical Engineering, University of Nebraska-Lincoln, Lincoln NE 68588, USA 2. Technology and Applications Center, Newport Corporation, Irvine, CA 92606, USA 3. Institute of Chemistry of Condensed Matter of Bordeaux, ICMCB-CNRS 87, Avenue du Docteur Albert Schweitzer F-33608 Pessac Cedex, France |
|
|
|
|
Abstract Advanced micro/nanofabrication of functional materials and structures with various dimensions represents a key research topic in modern nanoscience and technology and becomes critically important for numerous emerging technologies such as nanoelectronics, nanophotonics and micro/nanoelectromechanical systems. This review systematically explores the non-conventional material processing approaches in fabricating nanomaterials and micro/nanostructures of various dimensions which are challenging to be fabricated via conventional approaches. Research efforts are focused on laser-based techniques for the growth and fabrication of one-dimensional (1D), two-dimensional (2D) and three-dimensional (3D) nanomaterials and micro/nanostructures. The following research topics are covered, including: 1) laser-assisted chemical vapor deposition (CVD) for highly efficient growth and integration of 1D nanomaterial of carbon nanotubes (CNTs), 2) laser direct writing (LDW) of graphene ribbons under ambient conditions, and 3) LDW of 3D micro/nanostructures via additive and subtractive processes. Comparing with the conventional fabrication methods, the laser-based methods exhibit several unique advantages in the micro/nanofabrication of advanced functional materials and structures. For the 1D CNT growth, the laser-assisted CVD process can realize both rapid material synthesis and tight control of growth location and orientation of CNTs due to the highly intense energy delivery and laser-induced optical near-field effects. For the 2D graphene synthesis and patterning, room-temperature and open-air fabrication of large-scale graphene patterns on dielectric surface has been successfully realized by a LDW process. For the 3D micro/nanofabrication, the combination of additive two-photon polymerization (TPP) and subtractive multi-photon ablation (MPA) processes enables the fabrication of arbitrary complex 3D micro/nanostructures which are challenging for conventional fabrication methods. Considering the numerous unique advantages of laser-based techniques, the laser-based micro/nanofabrication is expected to play a more and more important role in the fabrication of advanced functional micro/nano-devices.
|
| Keywords
laser material interaction
carbon nanotubes (CNTs)
micro/nanofabrication
two-photon polymerization (TPP)
graphene
multi-photon ablation (MPA)
|
|
Corresponding Author(s):
Yongfeng LU
|
|
Just Accepted Date: 11 February 2015
Issue Date: 24 November 2015
|
|
| 1 |
Wiederrecht G. Handbook of Nanofabrication. Boston, MA: Elsevier, 2009
|
| 2 |
Quake S R, Scherer A. From micro- to nanofabrication with soft materials. Science, 2000, 290(5496): 1536–1540
https://doi.org/10.1126/science.290.5496.1536
pmid: 11090344
|
| 3 |
Henzie J, Lee J, Lee M H, Hasan W, Odom T W. Nanofabrication of plasmonic structures. Annual Review of Physical Chemistry, 2009, 60(1): 147–165
https://doi.org/10.1146/annurev.physchem.040808.090352
pmid: 18928404
|
| 4 |
Zhang G Q, van Roosmalen A J. The changing landscape of micro/nanoelectronics. In: More than Moore: Creating High Value Micro/Nanoelectronics Systems. New York: Springer US, 2009, 1–31
|
| 5 |
Zhang G Q, VanRoosmalen A J. More than Moore: Creating High Value Micro/Nanoelectronics Systems. New York: Springer US, 2009
|
| 6 |
Liang J, Chen Y, Xu Y, Liu Z, Zhang L, Zhao X, Zhang X, Tian J, Huang Y, Ma Y, Li F. Toward all-carbon electronics: fabrication of graphene-based flexible electronic circuits and memory cards using maskless laser direct writing. ACS Applied Materials & Interfaces, 2010, 2(11): 3310–3317
https://doi.org/10.1021/am1007326
pmid: 21058687
|
| 7 |
Meixner A J. Nanophotonics, nano-optics and nanospectroscopy. Beilstein Journal of Nanotechnology, 2011, 2: 499–500
|
| 8 |
Vasa P, Ropers C, Pomraenke R, Lienau C. Ultra-fast nano-optics. Laser & Photonics Reviews. 2009, 3(6): 483–507
|
| 9 |
Stockman M. Light-emitting devices: from nano-optics to street lights. Nature Materials, 2004, 3(7): 423–424
https://doi.org/10.1038/nmat1169
pmid: 15229487
|
| 10 |
Koch S W, Knorr A. Applied physics. Optics in the nano-world. Science, 2001, 293(5538): 2217–2218
https://doi.org/10.1126/science.1065119
pmid: 11567128
|
| 11 |
Fara L, Yamaguchi M. Advanced Solar Cell Materials, Technology, Modeling and Simulation. Hershey, PA: Engineering Science Reference, 2013
|
| 12 |
Rau U, Abou-Ras D, Kirchartz T. Advanced Characterization Techniques for Thin Film Solar Cells. Weinheim, Germany: Wiley-VCH, 2011
|
| 13 |
Zaghloul U, Papaioannou G, Bhushan B, Coccetti F, Pons P, Plana R. On the reliability of electrostatic NEMS/MEMS devices: review of present knowledge on the dielectric charging and stiction failure mechanisms and novel characterization methodologies. Microelectronics and Reliability, 2011, 51(9−11): 1810–1818
https://doi.org/10.1016/j.microrel.2011.07.081
|
| 14 |
Roncaglia A, Ferri M. Thermoelectric materials in MEMS and NEMS: a review. Science of Advanced Materials, 2011, 3(3): 401–419
|
| 15 |
Kumar S, Cola B A, Jackson R, Graham S. A review of carbon nanotube ensembles as flexible electronics and advanced packaging materials. Journal of Electronic Packaging, 2011, 133(2): 020906
https://doi.org/10.1115/1.4004220
|
| 16 |
Palacios T. Graphene electronics: thinking outside the silicon box. Nature Nanotechnology, 2011, 6(8): 464–465
https://doi.org/10.1038/nnano.2011.125
pmid: 21814230
|
| 17 |
Sinitskii A, Tour J M. Graphene electronics, unzipped. IEEE Spectrum, 2010, 47(11): 28–33
https://doi.org/10.1109/MSPEC.2010.5605889
|
| 18 |
Geim A K, Novoselov K S. The rise of graphene. Nature Materials, 2007, 6(3): 183–191
https://doi.org/10.1038/nmat1849
pmid: 17330084
|
| 19 |
Danilevičius P, Rekstyte S, Balciunas E, Kraniauskas A, Širmenis R, Baltriukienė D, Bukelskienė V, Gadonas R, Sirvydis V, Piskarskas A, Malinauskas M. Laser 3D micro/nanofabrication of polymers for tissue engineering applications. Optics & Laser Technology, 2013, 45: 518–524
https://doi.org/10.1016/j.optlastec.2012.05.038
|
| 20 |
Zhang Y L, Chen Q D, Xia H, Sun H B. Designable 3D nanofabrication by femtosecond laser direct writing. Nano Today, 2010, 5(5): 435–448
https://doi.org/10.1016/j.nantod.2010.08.007
|
| 21 |
Porro S, Musso S, Giorcelli M, Chiodoni A, Tagliaferro A. Optimization of a thermal-CVD system for carbon nanotube growth. Physica E, Low-Dimensional Systems and Nanostructures, 2007, 37(1−2): 16–20
https://doi.org/10.1016/j.physe.2006.07.010
|
| 22 |
Shi F, Wang Y, Xue C. Synthesis of GaN nanowires by CVD method: effect of reaction temperature. Journal of Experimental Nanoscience, 2011, 6(3): 238–247
https://doi.org/10.1080/17458080.2010.493183
|
| 23 |
Bae S, Kim H, Lee Y, Xu X, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y I, Kim Y J, Kim K S, Özyilmaz B, Ahn J H, Hong B H, Iijima S. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology, 2010, 5(8): 574–578
https://doi.org/10.1038/nnano.2010.132
pmid: 20562870
|
| 24 |
Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus M S, Kong J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Letters, 2009, 9(1): 30–35
https://doi.org/10.1021/nl801827v
pmid: 19046078
|
| 25 |
Hong J, Jang J. Micropatterning of graphene sheets: recent advances in techniques and applications. Journal of Materials Chemistry, 2012, 22(17): 8179–8191
https://doi.org/10.1039/c2jm00102k
|
| 26 |
Xiong W, Zhou Y S, He X N, Gao Y, Mahjouri-Samani M, Jiang L, Baldacchini T, Lu Y F. Simultaneous additive and subtractive three-dimensional nanofabrication using integrated two-photon polymerization and multiphoton ablation. Light Science & Applications, 2012, 1(4): e6
|
| 27 |
Shi J, Lu Y F, Wang H, Yi K J, Lin Y S, Zhang R, Liou S H. Synthesis of suspended carbon nanotubes on silicon inverse-opal structures by laser-assisted chemical vapour deposition. Nanotechnology, 2006, 17(15): 3822–3826
https://doi.org/10.1088/0957-4484/17/15/036
|
| 28 |
Xie Z, Zhou Y, He X, Gao Y, Park J, Ling H, Jiang L, Lu Y. Fast growth of diamond crystals in open air by combustion synthesis with resonant laser energy coupling. Crystal Growth & Design, 2010, 10(4): 1762–1766
https://doi.org/10.1021/cg9014515
|
| 29 |
Park J B, Jeong M S, Jeong S H. Direct writing of carbon nanotube patterns by laser-induced chemical vapor deposition on a transparent substrate. Applied Surface Science, 2009, 255(8): 4526–4530
https://doi.org/10.1016/j.apsusc.2008.11.070
|
| 30 |
Xiong W, Zhou Y S, Mahjouri-Samani M, Yang W Q, Yi K J, He X N, Liou S H, Lu Y F. Self-aligned growth of single-walled carbon nanotubes using optical near-field effects. Nanotechnology, 2009, 20(2): 025601
https://doi.org/10.1088/0957-4484/20/2/025601
pmid: 19417270
|
| 31 |
Odom T W, Huang J, Kim P, Lieber C M. Atomic structure and electronic properties of single-walled carbon nanotubes. Nature, 1998, 391(6662): 62–64
https://doi.org/10.1038/34145
|
| 32 |
Burghard M, Klauk H, Kern K. Carbon-based field-effect transistors for nanoelectronics. Advanced Materials, 2009, 21(25−26): 2586–2600
https://doi.org/10.1002/adma.200803582
|
| 33 |
Bachtold A, Hadley P, Nakanishi T, Dekker C. Logic circuits with carbon nanotube transistors. Science, 2001, 294(5545): 1317–1320
https://doi.org/10.1126/science.1065824
pmid: 11588220
|
| 34 |
Dai H. Carbon nanotubes: opportunities and challenges. Surface Science, 2002, 500(1−3): 218–241
https://doi.org/10.1016/S0039-6028(01)01558-8
|
| 35 |
Avouris P, Chen J. Nanotube electronics and optoelectronics. Materials Today, 2006, 9(10): 46–54
https://doi.org/10.1016/S1369-7021(06)71653-4
|
| 36 |
Kong J, Soh H T, Cassell A M, Quate C F, Dai H. Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature, 1998, 395(6705): 878–881
https://doi.org/10.1038/27632
|
| 37 |
Li Y, Mann D, Rolandi M, Kim W, Ural A, Hung S, Javey A, Cao J, Wang D, Yenilmez E, Wang Q, Gibbons J F, Nishi Y, Dai H. Preferential growth of semiconducting single-walled carbon nanotubes by a plasma enhanced CVD method. Nano Letters, 2004, 4(2): 317–321
https://doi.org/10.1021/nl035097c
|
| 38 |
Shi J, Lu Y F, Yi K J, Lin Y S, Liou S H, Hou J B, Wang X W. Direct synthesis of single-walled carbon nanotubes bridging metal electrodes by laser-assisted chemical vapor deposition. Applied Physics Letters, 2006, 89(8): 083105
https://doi.org/10.1063/1.2338005
|
| 39 |
Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, Xu C, Lee Y H, Kim S G, Rinzler A G, Colbert D T, Scuseria G E, Tomanek D, Fischer J E, Smalley R E. Crystalline ropes of metallic carbon nanotubes. Science, 1996, 273(5274): 483–487
https://doi.org/10.1126/science.273.5274.483
pmid: 8662534
|
| 40 |
Bethune D S, Kiang C H, de Vries M S, Gorman G, Savoy R, Vazquez J, Beyers R. Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layerwalls. Nature, 1993, 363(6430): 605–607
https://doi.org/10.1038/363605a0
|
| 41 |
Kim P, Shi L, Majumdar A, McEuen P L. Mesoscopic thermal transport and energy dissipation in carbon nanotubes. Physica B, Condensed Matter, 2002, 323(1−4): 67–70
https://doi.org/10.1016/S0921-4526(02)00969-9
|
| 42 |
Ural A, Li Y, Dai H. Electric-field-aligned growth of single-walled carbon nanotubes on surfaces. Applied Physics Letters, 2002, 81(18): 3464–3466
https://doi.org/10.1063/1.1518773
|
| 43 |
Falvo M R, Clary G J, Taylor R M 2nd, Chi V, Brooks F P Jr, Washburn S, Superfine R. Bending and buckling of carbon nanotubes under large strain. Nature, 1997, 389(6651): 582–584
https://doi.org/10.1038/39282
pmid: 9335495
|
| 44 |
Vijayaraghavan A, Blatt S, Weissenberger D, Oron-Carl M, Hennrich F, Gerthsen D, Hahn H, Krupke R. Ultra-large-scale directed assembly of single-walled carbon nanotube devices. Nano Letters, 2007, 7(6): 1556–1560
https://doi.org/10.1021/nl0703727
pmid: 17488050
|
| 45 |
Rao S G, Huang L, Setyawan W, Hong S. Nanotube electronics: large-scale assembly of carbon nanotubes. Nature, 2003, 425(6953): 36–37
https://doi.org/10.1038/425036a
pmid: 12955130
|
| 46 |
Zhang Y, Chang A, Cao J, Wang Q, Kim W, Li Y, Morris N, Yenilmez E, Kong J, Dai H. Electric-field-directed growth of aligned single-walled carbon nanotubes. Applied Physics Letters, 2001, 79(19): 3155–3157
https://doi.org/10.1063/1.1415412
|
| 47 |
Huang S, Cai X, Liu J. Growth of millimeter-long and horizontally aligned single-walled carbon nanotubes on flat substrates. Journal of the American Chemical Society, 2003, 125(19): 5636–5637
https://doi.org/10.1021/ja034475c
pmid: 12733894
|
| 48 |
Tans S J, Devoret M H, Dai H, Thess A, Smalley R E, Geerligs L J, Dekker C. Individual single-wall carbon nanotubes as quantum wires. Nature, 1997, 386(6624): 474–477
https://doi.org/10.1038/386474a0
|
| 49 |
Xi N, Szu H, Buss J, Mack I. Carbon nanotube based spectrum infrared detectors. In: Proceedings of SPIE 5987, Electro-Optical and Infrared Systems: Technology and Applications II. 2005, 59870M
|
| 50 |
Bockrath M, Cobden D H, McEuen P L, Chopra N G, Zettl A, Thess A, Smalley R E. Single-electron transport in ropes of carbon nanotubes. Science, 1997, 275(5308): 1922–1925
https://doi.org/10.1126/science.275.5308.1922
pmid: 9072967
|
| 51 |
Maehashi K, Ohno Y, Inoue K, Matsumoto K. Laser-resonance chirality selection in single-walled carbon nanotubes. AIP Conference Proceedings, 2005, 772(1): 1023–1024
|
| 52 |
Xiong W, Gao Y, Mahjouri-Samani M, Zhou Y S, Mitchell M, J B Park, Lu Y F. Laser assisted fabrication for controlled single-walled carbon nanotube synthesis and processing. Chinese Journal of Lasers, 2009, 36(12): 3125–3132
https://doi.org/10.3788/CJL20093612.3125
|
| 53 |
Hayazawa N, Yano T, Watanabe H, Inouye Y, Kawata S. Detection of an individual single-wall carbon nanotube by tip-enhanced near-field Raman spectroscopy. Chemical Physics Letters, 2003, 376(1−2): 174–180
https://doi.org/10.1016/S0009-2614(03)00883-2
|
| 54 |
Novotny L, Bian R X, Xie X S. Theory of nanometric optical tweezers. Physical Review Letters, 1997, 79(4): 645–648
https://doi.org/10.1103/PhysRevLett.79.645
|
| 55 |
Downes A, Salter D, Elfick A. Heating effects in tip-enhanced optical microscopy. Optics Express, 2006, 14(12): 5216–5222
https://doi.org/10.1364/OE.14.005216
pmid: 19516687
|
| 56 |
Yao Y, Li Q, Zhang J, Liu R, Jiao L, Zhu Y T, Liu Z. Temperature-mediated growth of single-walled carbon-nanotube intramolecular junctions. Nature Materials, 2007, 6(4): 283–286
https://doi.org/10.1038/nmat1865
pmid: 17369833
|
| 57 |
Zhou Y S, Xiong W, Gao Y, Mahjouri-Samani M, Mitchell M, Jiang L, Lu Y F. Towards carbon-nanotube integrated devices: optically controlled parallel integration of single-walled carbon nanotubes. Nanotechnology, 2010, 21(31): 315601
https://doi.org/10.1088/0957-4484/21/31/315601
pmid: 20622296
|
| 58 |
Xiong W, Zhou Y S, Mahjouri-Samani M, Yang W Q, Yi K J, He X N, Lu Y F. Controlled-growth of single-walled carbon nanotubes using optical near-field effects. In: Proceedings of SPIE 7202, Laser-based Micro- and Nanopackaging and Assembly III. 2009, 720209
https://doi.org/10.1117/12.808629
|
| 59 |
Cantoro M, Hofmann S, Pisana S, Scardaci V, Parvez A, Ducati C, Ferrari A C, Blackburn A M, Wang K Y, Robertson J. Catalytic chemical vapor deposition of single-wall carbon nanotubes at low temperatures. Nano Letters, 2006, 6(6): 1107–1112
https://doi.org/10.1021/nl060068y
pmid: 16771562
|
| 60 |
van Dorp W F, Hagen C W. A critical literature review of focused electron beam induced deposition. Journal of Applied Physics, 2008, 104(8): 081301
https://doi.org/10.1063/1.2977587
|
| 61 |
Brintlinger T, Chen Y, Dürkop T, Cobas E, Fuhrer M S, Barry J D, Melngailis J. Rapid imaging of nanotubes on insulating substrates. Applied Physics Letters, 2002, 81(13): 2454–2456
https://doi.org/10.1063/1.1509113
|
| 62 |
Zhou Y S, Yi K J, Mahjouri-Samani M, Xiong W, Lu Y F, Liou S H. Image contrast enhancement in field-emission scanning electron microscopy of single-walled carbon nanotubes. Applied Surface Science, 2009, 255(7): 4341–4346
https://doi.org/10.1016/j.apsusc.2008.11.035
|
| 63 |
Homma Y, Suzuki S, Kobayashi Y, Nagase M, Takagi D. Mechanism of bright selective imaging of single-walled carbon nanotubes on insulators by scanning electron microscopy. Applied Physics Letters, 2004, 84(10): 1750–1752
https://doi.org/10.1063/1.1667608
|
| 64 |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005, 438(7065): 197–200
https://doi.org/10.1038/nature04233
pmid: 16281030
|
| 65 |
Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim A K. Room-temperature quantum Hall effect in graphene. Science, 2007, 315(5817): 1379
https://doi.org/10.1126/science.1137201
pmid: 17303717
|
| 66 |
Lee C, Wei X, Kysar J W, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321(5887): 385–388
https://doi.org/10.1126/science.1157996
pmid: 18635798
|
| 67 |
Seol J H, Jo I, Moore A L, Lindsay L, Aitken Z H, Pettes M T, Li X, Yao Z, Huang R, Broido D, Mingo N, Ruoff R S, Shi L. Two-dimensional phonon transport in supported graphene. Science, 2010, 328(5975): 213–216
https://doi.org/10.1126/science.1184014
pmid: 20378814
|
| 68 |
Vakil A, Engheta N. Transformation optics using graphene. Science, 2011, 332(6035): 1291–1294
https://doi.org/10.1126/science.1202691
pmid: 21659598
|
| 69 |
Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K. Fine structure constant defines visual transparency of graphene. Science, 2008, 320(5881): 1308
https://doi.org/10.1126/science.1156965
pmid: 18388259
|
| 70 |
Li X, Zhu H, Wang K, Cao A, Wei J, Li C, Jia Y, Li Z, Li X, Wu D. Graphene-on-silicon Schottky junction solar cells. Advanced materials (Deerfield Beach, Fla.), 2010, 22(25): 2743–2748
|
| 71 |
Park H, Rowehl J A, Kim K K, Bulovic V, Kong J. Doped graphene electrodes for organic solar cells. Nanotechnology, 2010, 21(50): 505204
https://doi.org/10.1088/0957-4484/21/50/505204
pmid: 21098945
|
| 72 |
Feng L, Wu L, Wang J, Ren J, Miyoshi D, Sugimoto N, Qu X. Detection of a prognostic indicator in early-stage cancer using functionalized graphene-based peptide sensors. Advanced materials (Deerfield Beach, Fla.), 2012, 24(1): 125–131
|
| 73 |
Myung S, Solanki A, Kim C, Park J, Kim K S, Lee K. Graphene-encapsulated nanoparticle-based biosensor for the selective detection of cancer biomarkers. Advanced materials (Deerfield Beach, Fla.), 2011, 23(19): 2221–2225
|
| 74 |
Hwang J O, Park J S, Choi D S, Kim J Y, Lee S H, Lee K E, Kim Y H, Song M H, Yoo S, Kim S O. Workfunction-tunable, N-doped reduced graphene transparent electrodes for high-performance polymer light-emitting diodes. ACS Nano, 2012, 6(1): 159–167
https://doi.org/10.1021/nn203176u
pmid: 22148918
|
| 75 |
Hecht D S, Hu L, Irvin G. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Advanced materials (Deerfield Beach, Fla.), 2011, 23(13): 1482–1513
|
| 76 |
Kalita G, Matsushima M, Uchida H, Wakita K, Umeno M. Graphene constructed carbon thin films as transparent electrodes for solar cell applications. Journal of Materials Chemistry, 2010, 20(43): 9713–9717
https://doi.org/10.1039/c0jm01352h
|
| 77 |
Xiong W, Zhou Y S, Jiang L J, Sarkar A, Mahjouri-Samani M, Xie Z Q, Gao Y, Ianno N J, Jiang L, Lu Y F. Single-step formation of graphene on dielectric surfaces. Advanced materials (Deerfield Beach, Fla.), 2013, 25(4): 630–634
|
| 78 |
Wei Z, Wang D, Kim S, Kim S Y, Hu Y, Yakes M K, Laracuente A R, Dai Z, Marder S R, Berger C, King W P, de Heer W A, Sheehan P E, Riedo E. Nanoscale tunable reduction of graphene oxide for graphene electronics. Science, 2010, 328(5984): 1373–1376
https://doi.org/10.1126/science.1188119
pmid: 20538944
|
| 79 |
Zhang Y, Guo L, Wei S, He Y, Xia H, Chen Q, Sun H, Xiao F. Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction. Nano Today, 2010, 5(1): 15–20
https://doi.org/10.1016/j.nantod.2009.12.009
|
| 80 |
Zhou Y, Bao Q, Varghese B, Tang L A L, Tan C K, Sow C, Loh K P. Microstructuring of graphene oxide nanosheets using direct laser writing. Advanced materials (Deerfield Beach, Fla.), 2010, 22(1): 67–71
|
| 81 |
Park J B, Xiong W, Gao Y, Qian M, Xie Z Q, Mitchell M, Zhou Y S, Han G H, Jiang L, Lu Y F. Fast growth of graphene patterns by laser direct writing. Applied Physics Letters, 2011, 98(12): 123109
https://doi.org/10.1063/1.3569720
|
| 82 |
Park J B, Xiong W, Xie Z Q, Gao Y, Qian M, Mitchell M, Mahjouri-Samani M, Zhou Y S, Jiang L, Lu Y F. Transparent interconnections formed by rapid single-step fabrication of graphene patterns. Applied Physics Letters, 2011, 99(5): 053103
https://doi.org/10.1063/1.3622660
|
| 83 |
Xiong W, Zhou Y S, Hou W J, Jiang L J, Gao Y, Fan L S, Jiang L, Silvain J F, Lu Y F. Direct writing of graphene patterns on insulating substrates under ambient conditions. Scientific Reports, 2014, 4: 4892
https://doi.org/10.1038/srep04892
pmid: 24809639
|
| 84 |
Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S, Geim A K. Raman spectrum of graphene and graphene layers. Physical Review Letters, 2006, 97(18): 187401
https://doi.org/10.1103/PhysRevLett.97.187401
pmid: 17155573
|
| 85 |
Casiraghi C, Hartschuh A, Qian H, Piscanec S, Georgi C, Fasoli A, Novoselov K S, Basko D M, Ferrari A C. Raman spectroscopy of graphene edges. Nano Letters, 2009, 9(4): 1433–1441
https://doi.org/10.1021/nl8032697
pmid: 19290608
|
| 86 |
Kuzmenko A B, van Heumen E, Carbone F, van der Marel D. Universal optical conductance of graphite. Physical Review Letters, 2008, 100(11): 117401
https://doi.org/10.1103/PhysRevLett.100.117401
pmid: 18517825
|
| 87 |
Rigo V A, Martins T B, da Silva A J R, Fazzio A, Miwa R H. Electronic, structural, and transport properties of Ni-doped graphene nanoribbons. Physical Review B: Condensed Matter and Materials Physics, 2009, 79(7): 075435
https://doi.org/10.1103/PhysRevB.79.075435
|
| 88 |
Giovannetti G, Khomyakov P A, Brocks G, Karpan V M, van den Brink J, Kelly P J. Doping graphene with metal contacts. Physical Review Letters, 2008, 101(2): 026803
https://doi.org/10.1103/PhysRevLett.101.026803
pmid: 18764212
|
| 89 |
David J M, Buehler M G. A numerical analysis of various cross sheet resistor test structures. Solid-State Electronics, 1977, 20(6): 539–543
https://doi.org/10.1016/S0038-1101(77)81011-3
|
| 90 |
Fang T, Konar A, Xing H, Jena D. Carrier statistics and quantum capacitance of graphene sheets and ribbons. Applied Physics Letters, 2007, 91(9): 092109
https://doi.org/10.1063/1.2776887
|
| 91 |
Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 2009, 324(5932): 1312–1314
https://doi.org/10.1126/science.1171245
pmid: 19423775
|
| 92 |
Gómez-Navarro C, Weitz R T, Bittner A M, Scolari M, Mews A, Burghard M, Kern K. Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Letters, 2007, 7(11): 3499–3503
https://doi.org/10.1021/nl072090c
pmid: 17944526
|
| 93 |
Eda G, Ball J, Mattevi C, Acik M, Artiglia L, Granozzi G, Chabal Y, Anthopoulos T D, Chhowalla M. Partially oxidized graphene as a precursor to graphene. Journal of Materials Chemistry, 2011, 21(30): 11217–11223
https://doi.org/10.1039/c1jm11266j
|
| 94 |
Guo L, Zhang Y, Han D, Jiang H, Wang D, Li X, Xia H, Feng J, Chen Q, Sun H. Laser-mediated programmable N doping and simultaneous reduction of graphene oxides. Advanced Optical Materials, 2014, 2(2): 120–125
|
| 95 |
Gates B D, Xu Q, Love J C, Wolfe D B, Whitesides G M. Unconventional nanofabrication. Annual Review of Materials Research, 2004, 34(1): 339–372
https://doi.org/10.1146/annurev.matsci.34.052803.091100
|
| 96 |
Gates B D, Xu Q, Stewart M, Ryan D, Willson C G, Whitesides G M. New approaches to nanofabrication: molding, printing, and other techniques. Chemical Reviews, 2005, 105(4): 1171–1196
https://doi.org/10.1021/cr030076o
pmid: 15826012
|
| 97 |
Dixon C J, Curtines O W. Nanotechnology: Nanofabrication, Patterning, and Self Assembly. New York: Nova Science Publishers Inc., 2009
|
| 98 |
Mailly D. Nanofabrication techniques. European Physical Journal. Special Topics, 2009, 172(1): 333–342
https://doi.org/10.1140/epjst/e2009-01058-x
|
| 99 |
Wiley B J, Qin D, Xia Y. Nanofabrication at high throughput and low cost. ACS Nano, 2010, 4(7): 3554–3559
https://doi.org/10.1021/nn101472p
pmid: 20695512
|
| 100 |
Marrian C R K, Dobisz E A, Glembocki O J. Nanofabrication−how small can devices get. R & D Magazine, 1992, 34(2): 123
|
| 101 |
Marrian C R K, Tennant D M. Nanofabrication. Journal of Vacuum Science & Technology. A, Vacuum, Surfaces, and Films, 2003, 21(5): S207–S215
https://doi.org/10.1116/1.1600446
|
| 102 |
Gattass R R, Mazur E. Femtosecond laser micromachining in transparent materials. Nature Photonics, 2008, 2(4): 219–225
https://doi.org/10.1038/nphoton.2008.47
|
| 103 |
Li L, Fourkas J T. Multiphoton polymerization. Materials Today, 2007, 10(6): 30–37
https://doi.org/10.1016/S1369-7021(07)70130-X
|
| 104 |
Park S H, Yang D Y, Lee K S. Two-photon stereolithography for realizing ultraprecise three-dimensional nano/microdevices. Laser & Photonics Reviews, 2009, 3(1−2): 1–11
|
| 105 |
Lee K, Yang D, Park S H, Kim R H. Recent developments in the use of two-photon polymerization in precise 2D and 3D microfabrications. Polymers for Advanced Technologies, 2006, 17(2): 72–82
https://doi.org/10.1002/pat.664
|
| 106 |
Chong T C, Hong M H, Shi L P. Laser precision engineering: from microfabrication to nanoprocessing. Laser & Photonics Reviews, 2010, 4(1): 123–143
|
| 107 |
Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Optics Letters, 1994, 19(11): 780–782
https://doi.org/10.1364/OL.19.000780
pmid: 19844443
|
| 108 |
Feigel A, Veinger M, Sfez B, Arsh A, Klebanov M, Lyubin V. Three-dimensional simple cubic woodpile photonic crystals made from chalcogenide glasses. Applied Physics Letters, 2003, 83(22): 4480–4482
https://doi.org/10.1063/1.1631387
|
| 109 |
Gomez D, Goenaga I, Lizuain I, Ozaita M. Femtosecond laser ablation for microfluidics. Optical Engineering (Redondo Beach, Calif.), 2005, 44(5): 051105
https://doi.org/10.1117/1.1902783
|
| 110 |
Korte F, Serbin J, Koch J, Egbert A, Fallnich C, Ostendorf A, Chichkov B N. Towards nanostructuring with femtosecond laser pulses. Applied Physics. A, Materials Science & Processing, 2003, 77(2): 229–235
|
| 111 |
Suriano R, Kuznetsov A, Eaton S M, Kiyan R, Cerullo G, Osellame R, Chichkov B N, Levi M, Turri S. Femtosecond laser ablation of polymeric substrates for the fabrication of microfluidic channels. Applied Surface Science, 2011, 257(14): 6243–6250
https://doi.org/10.1016/j.apsusc.2011.02.053
|
| 112 |
Chichkov B N, Momma C, Nolte S, Von Alvensleben F, Tünnermann A. Femtosecond, picosecond and nanosecond laser ablation of solids. Applied Physics. A, Materials Science & Processing, 1996, 63(2): 109–115
https://doi.org/10.1007/BF01567637
|
| 113 |
Sun H B, Xu Y, Juodkazis S, Sun K, Watanabe M, Matsuo S, Misawa H, Nishii J. Arbitrary-lattice photonic crystals created by multiphoton microfabrication. Optics Letters, 2001, 26(6): 325–327
https://doi.org/10.1364/OL.26.000325
pmid: 18040312
|
| 114 |
Zhou G, Gu M. Direct optical fabrication of three-dimensional photonic crystals in a high refractive index LiNbO3 crystal. Optics Letters, 2006, 31(18): 2783–2785
https://doi.org/10.1364/OL.31.002783
pmid: 16936891
|
| 115 |
Gu M, Jia B, Li J, Ventura M J. Fabrication of three-dimensional photonic crystals in quantum-dot-based materials. Laser & Photonics Reviews, 2010, 4(3): 414–431
|
| 116 |
Fischer P, McWilliam A, Paterson L, Brown C T A, Sibbett W, Dholakia K, MacDonald M P. Two-photon ablation with 1278 nm laser radiation. Journal of Optics. A, Pure and Applied Optics, 2007, 9(6): S19–S23
https://doi.org/10.1088/1464-4258/9/6/S04
|
| 117 |
Waldbaur A, Rapp H, Länge K, Rapp B E. Let there be chip-towards rapid prototyping of microfluidic devices: one-step manufacturing processes. Analytical Methods, 2011, 3(12): 2681–2716
|
| 118 |
Goldman J R, Prybyla J A. Ultrafast dynamics of laser-excited electron distributions in silicon. Physical Review Letters, 1994, 72(9): 1364–1367
https://doi.org/10.1103/PhysRevLett.72.1364
pmid: 10056694
|
| 119 |
Xiong W, Zhou Y S, He X N, Gao Y, Mahjouri-Samani M, Baldacchini T, Lu Y F. Three-dimensional sub-wavelength fabrication by integration of additive and subtractive femtosecond-laser direct writing. In: Proceedings of MRS, Volume 1499, 2013
https://doi.org/10.1557/opl.2013.443
|
| 120 |
Zappe H P. Fundamentals of Micro-Optics. Cambridge, New York: Cambridge University Press, 2010
|
| 121 |
Qin D, Xia Y, Whitesides G M. Soft lithography for micro- and nanoscale patterning. Nature Protocols, 2010, 5(3): 491–502
https://doi.org/10.1038/nprot.2009.234
pmid: 20203666
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|