|
|
Highly efficient tunable optical filter based on liquid crystal micro-ring resonator with large free spectral range |
Jing DAI1,2,Minming ZHANG1,2,*( ),Feiya ZHOU1,2,Deming LIU1,2 |
1. School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China 2. Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China |
|
|
Abstract A highly efficient tunable optical filter of liquid crystal (LC) optical micro-ring resonator (MRR) was proposed. The 4-μm-radius ring consists of a silicon-on-insulator (SOI) asymmetric bent slot waveguide with a LC cladding. The geometry of the slot waveguide resulted in the strong electro-optic effect of the LC, and therefore induced an increase in effective refractive index by 0.0720 for the quasi-TE mode light in the slot-waveguide. The ultra-wide tuning range (56.0 nm) and large free spectral range (FSR) (~28.0 nm) of the optical filters enabled wavelength reconfigurable multiplexing devices with a drive voltage of only 5 V. The influences of parameters, such as the slot width, total width of Si rails and slot shift on the device’s performance, were analyzed and the optimal design was given. Moreover, the influence of fabrication tolerances and the loss of device were both investigated. Compared with state-of-the-art tunable MRRs, the proposed electrically tunable micro-ring resonator owns the excellent features of wider tuning ranges, larger FSRs and ultralow voltages.
|
Keywords
integrated optics devices
liquid crystals
micro-ring resonator
slot waveguide
wavelength tuning
|
Corresponding Author(s):
Minming ZHANG
|
Online First Date: 30 June 2015
Issue Date: 18 March 2016
|
|
1 |
Selvaraja S K, Jaenen P, Bogaerts W, Van Thourhout D, Dumon P, Baets R. Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193-nm optical lithography. Journal of Lightwave Technology, 2009, 27(18): 4076–4083
https://doi.org/10.1109/JLT.2009.2022282
|
2 |
Dumon P, Bogaerts W, Wiaux V, Wouters J, Beckx S, Van Campenhout J, Taillaert D, Luysaert B, Bienstman P, Van Thourhout D, Baets R. Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography. IEEE Photonics Technology Letters, 2004, 16(5): 1328–1330
https://doi.org/10.1109/LPT.2004.826025
|
3 |
Basch E B, Egorov R, Gringeri S, Elby S. Architectural tradeoffs for reconfigurable dense wavelength-division multiplexing systems. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(4): 615–626
https://doi.org/10.1109/JSTQE.2006.876167
|
4 |
Ng H, Wang M R, Li D, Wang X, Martinez J, Panepucci R R, Pathak K. 1×4 wavelength reconfigurable photonic switch using thermally tuned microring resonators fabricated on silicon substrate. IEEE Photonics Technology Letters, 2007, 19(9): 704–706
https://doi.org/10.1109/LPT.2007.895420
|
5 |
Yalcin A, Popat K C, Aldridge J C, Desai T A, Hryniewicz J, Chbouki N, Little B E, King O, Van V, Chu S, Gill D, Anthes-Washburn M, Unlu M S, Goldberg B B. Optical sensing of biomolecules using microring resonators. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(1): 148–155
https://doi.org/10.1109/JSTQE.2005.863003
|
6 |
Dong P, Qian W, Liang H, Shafiiha R, Feng N, Feng D, Zheng X, Krishnamoorthy A V, Asghari M. Low power and compact reconfigurable multiplexing devices based on silicon microring resonators. Optics Express, 2010, 18(10): 9852–9858
https://doi.org/10.1364/OE.18.009852
pmid: 20588834
|
7 |
Guarino A, Poberaj G, Rezzonico D, Degl’innocenti R, Günter P. Electro-optically tunable microring resonators in lithium niobate. Nature Photonics, 2007, 1(7): 407–410
https://doi.org/10.1038/nphoton.2007.93
|
8 |
Liu A, Liao L, Rubin D, Nguyen H, Ciftcioglu B, Chetrit Y, Izhaky N, Paniccia M. High-speed optical modulation based on carrier depletion in a silicon waveguide. Optics Express, 2007, 15(2): 660–668
https://doi.org/10.1364/OE.15.000660
pmid: 19532289
|
9 |
Dong P, Qian W, Liang H, Shafiiha R, Feng D, Li G, Cunningham J E, Krishnamoorthy A V, Asghari M. Thermally tunable silicon racetrack resonators with ultralow tuning power. Optics Express, 2010, 18(19): 20298–20304
https://doi.org/10.1364/OE.18.020298
pmid: 20940921
|
10 |
Nishihara H, Haruna M, Suhara T. Optical Integrated Circuit. New York: McGraw-Hill1985, 36–44
|
11 |
Soref R A, Bennett B R. Electrooptical effects in silicon. IEEE Journal of Quantum Electronics, 1987, 23(1): 123–129
https://doi.org/10.1109/JQE.1987.1073206
|
12 |
Maune B, Lawson R, Gunn C, Scherer A, Dalton L. Electrically tunable ring resonators incorporating nematic liquid crystals as cladding layers. Applied Physics Letters, 2003, 83(23): 4689–4691
https://doi.org/10.1063/1.1630370
|
13 |
Falco A D, Assanto G. Tunable wavelength-selective add–drop in liquid crystals on a silicon microresonator. Optics Communications, 2007, 279(1): 210–213
https://doi.org/10.1016/j.optcom.2007.06.063
|
14 |
De Cort W, Beeckman J, James R, Fernandez F A, Baets R, Neyts K. Tuning silicon-on-insulator ring resonators with in-plane switching liquid crystals. Journal of the Optical Society of America B, Optical Physics, 2011, 28(1): 79–85
https://doi.org/10.1364/JOSAB.28.000079
|
15 |
De Cort W, Beeckman J, Claes T, Neyts K, Baets R. Wide tuning of silicon-on-insulator ring resonators with a liquid crystal cladding. Optics Letters, 2011, 36(19): 3876–3878
https://doi.org/10.1364/OL.36.003876
pmid: 21964127
|
16 |
Almeida V R, Xu Q, Barrios C A, Lipson M. Guiding and confining light in void nanostructure. Optics Letters, 2004, 29(11): 1209–1211
https://doi.org/10.1364/OL.29.001209
pmid: 15209249
|
17 |
Anderson P A, Schmidt B S, Lipson M. High confinement in silicon slot waveguides with sharp bends. Optics Express, 2006, 14(20): 9197–9202
https://doi.org/10.1364/OE.14.009197
pmid: 19529300
|
18 |
Kargar A, Chao C. Design and optimization of waveguide sensitivity in slot microring sensors. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2011, 28(4): 596–603
https://doi.org/10.1364/JOSAA.28.000596
pmid: 21478955
|
19 |
Pfeifle J, Alloatti L, Freude W, Leuthold J, Koos C. Silicon-organic hybrid phase shifter based on a slot waveguide with a liquid-crystal cladding. Optics Express, 2012, 20(14): 15359–15376
https://doi.org/10.1364/OE.20.015359
pmid: 22772233
|
20 |
Barrios C A, Lipson M. Electrically driven silicon resonant light emitting device based on slot-waveguide. Optics Express, 2005, 13(25): 10092–10101
https://doi.org/10.1364/OPEX.13.010092
pmid: 19503222
|
21 |
Gould M, Baehr-Jones T, Ding R, Huang S, Luo J, Jen A K, Fedeli J M, Fournier M, Hochberg M. Silicon-polymer hybrid slot waveguide ring-resonator modulator. Optics Express, 2011, 19(5): 3952–3961
https://doi.org/10.1364/OE.19.003952
pmid: 21369221
|
22 |
Desmet H, Neyts K, Baets R. Liquid crystal orientation on patterns etched in silicon on insulator. Integrated Optics, Silicon Photonics, and Photonic Integrated Circuits, 2006, 6183: 61831Z
|
23 |
Ge Z, Wu T X, Lu R, Zhu X, Hong Q, Wu S. Comprehensive three-dimensional dynamic modeling of liquid crystal devices using finite element method. Journal of Display Technology, 2005, 1(2): 194–206
https://doi.org/10.1109/JDT.2005.858885
|
24 |
Fallahkhair A B, Li K S, Murphy T E. Vector finite difference modesolver for anisotropic dielectric waveguides. Journal of Lightwave Technology, 2008, 26(11): 1423–1431
https://doi.org/10.1109/JLT.2008.923643
|
25 |
Dell’Olio F, Passaro V M. Optical sensing by optimized silicon slot waveguides. Optics Express, 2007, 15(8): 4977–4993
https://doi.org/10.1364/OE.15.004977
pmid: 19532747
|
26 |
Donisi D, Bellini B, Beccherelli R, Asquini R, Gilardi G, Trotta M, d’ Alessandro A. A switchable liquid-crystal optical channel waveguide on silicon. IEEE Journal of Quantum Electronics, 2010, 46(5): 762–768
https://doi.org/10.1109/JQE.2009.2038241
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|