Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2015, Vol. 8 Issue (1) : 104-109    https://doi.org/10.1007/s12200-015-0491-1
RESEARCH ARTICLE
Oscillation effect in frequency domain current from a photoconductive antenna via double-probe-pulse terahertz detection technique
Qi JIN,Jinsong LIU,Kejia WANG(),Zhengang YANG,Shenglie WANG,Kefei YE
Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(833 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Via constructing a special terahertz time domain spectroscopy (THz-TDS) system in which two femtosecond (fs) laser pulses were used as probe pulses to excite a photoconductive (PC) THz detector, the time behavior of the current from the detector was measured. The corresponding theoretical analysis was performed by a well-known equivalent-circuit model. When the time domain current was transformed to frequency domain, an oscillation effect was observed. The oscillation frequency was decided by the time delay between the two probe pulses. The number of the extrema in the frequency domain current curve was proportion to the pulse interval in 0.1-2 THz. A method to measure the interval of fs laser pulses was proposed. It is important for applications of fs laser pulses or train.

Keywords terahertz (THz)      photoconductivity      frequency oscillation     
Corresponding Author(s): Kejia WANG   
Just Accepted Date: 14 January 2015   Online First Date: 04 February 2015    Issue Date: 13 February 2015
 Cite this article:   
Qi JIN,Jinsong LIU,Kejia WANG, et al. Oscillation effect in frequency domain current from a photoconductive antenna via double-probe-pulse terahertz detection technique[J]. Front. Optoelectron., 2015, 8(1): 104-109.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-015-0491-1
https://academic.hep.com.cn/foe/EN/Y2015/V8/I1/104
Fig.1  Experimental setup. fs: femtosecond; BS: beam splitter; HWP: half-wave plate; PBS: polarization beam splitter; PC: photoconductive
Fig.2  Normalized measured time domain current (inset red lines) and the corresponding normalized frequency domain current (black lines) under different τ 1 , 2 . (a) 0 ps; (b) 1 ps; (c) 2 ps; (d) 3 ps; (e) 4 ps; (f) 5 ps
Fig.3  Normalized current J as a function of τ and its corresponding Fourier transform amplitude (Observation: black lines, and simulation: red lines). (a) and (b) for τ 1 , 2 = 2 ps, (c) and (d) for τ 1 , 2 = 5 ps
Fig.4  Relation between the pulse interval and the number of minima in frequency domain current curves
1 Pedersen J E, Lyssenko V G, Hvam J M, Jepsen P U, Keiding S R, S?rensen C B, Lindelof P E. Ultrafast local field dynamics in photoconductive THz antennas. Applied Physics Letters, 1993, 62(11): 1265–1267
https://doi.org/10.1063/1.108702
2 Jacobsen R H, Birkelund K, Holst T, Jepsen P U, Keiding S R. Interpretation of photocurrent correlation measurements used for ultrafast photoconductive switch characterization. Journal of Applied Physics, 1996, 79(5): 2649–2657
https://doi.org/10.1063/1.361135
3 Jepsen P U, Jacobsen R H, Keiding S R. Generation and detection of terahertz pulses from biased semiconductor antennas. Journal of the Optical Society of America B, Optical Physics, 1996, 13(11): 2424–2436
https://doi.org/10.1364/JOSAB.13.002424
4 Yano R, Gotoh H, Hirayama Y, Miyashita S. Systematic pump-probe terahertz wave emission spectroscopy of a photoconductive antenna fabricated on low-temperature grown GaAs. Journal of Applied Physics, 2004, 96(7): 3635–3638
https://doi.org/10.1063/1.1786667
5 Loata G C. Investigation of low-temperature-grown GaAs photoconductive antennae for continuous-wave and pulsed terahertz generation. Dissertation for the Doctoral Degree. Frankfut am Main: Goethe-University, 2007
6 Loata G C, L?ffler T, Roskos H G. Evidence for long-living charge carriers in electrically biased low-temperature-grown GaAs photoconductive switches. Applied Physics Letters, 2007, 90(5): 052101-1–052101-3
https://doi.org/10.1063/1.2436719
7 Loata G C, Thomson M D, L?ffler T, Roskos H G. Radiation field screening in photoconductive antennae studied via pulsed terahertz emission spectroscopy. Applied Physics Letters, 2007, 91(23): 232506-1–232506-3
https://doi.org/10.1063/1.2823590
8 Siebert K J, Lisauskas A, L?ffler T, Roskos H G. Field screening in low-temperature-grown GaAs photoconductive antennas. Japanese Journal of Applied Physics, 2004, 43(3R): 1038–1043
https://doi.org/10.1143/JJAP.43.1038
9 Darrow J T, Zhang X, Auston D H, Morse J D. Saturation properties of large-aperture photoconducting antennas. IEEE Journal of Quantum Electronics, 1992, 28(6): 1607–1616
https://doi.org/10.1109/3.135314
10 Liu J, Zou S, Yang Z, Wang K, Ye K. Wave shape recovery for terahertz pulse field detection via photoconductive antenna. Optics Letters, 2013, 38(13): 2268–2270
https://doi.org/10.1364/OL.38.002268 pmid: 23811898
11 Kim D S, Citrin D S. Coulomb and radiation screening in photoconductive terahertz sources. Applied Physics Letters, 2006, 88(16): 161117-1–161117-3
https://doi.org/10.1063/1.2196480
12 Zhang X, Xu J. Introduction to THz Wave Photonics. New York: Springer, 2010, Chap. 2
[1] Kang LIU, Pingjie HUANG, Xi-Cheng ZHANG. Terahertz wave generation from ring-Airy beam induced plasmas and remote detection by terahertz-radiation-enhanced-emission-of-fluorescence: a review[J]. Front. Optoelectron., 2019, 12(2): 117-147.
[2] Chen JIANG, Honglei ZHAN, Kun ZHAO, Cheng FU. Characterization of the cooling process of solid n-alkanes via terahertz spectroscopy[J]. Front. Optoelectron., 2017, 10(2): 132-137.
[3] Tianyi WANG,Zhengang YANG,Si ZOU,Kejia WANG,Shenglie WANG,Jinsong LIU. Time behavior of field screening effects in small-size GaAs photoconductive terahertz antenna[J]. Front. Optoelectron., 2015, 8(1): 98-103.
[4] Yee Sin ANG,Qinjun CHEN,Chao ZHANG. Nonlinear optical response of graphene in terahertz and near-infrared frequency regime[J]. Front. Optoelectron., 2015, 8(1): 3-26.
[5] J. Bianca JACKSON,Julien LABAUNE,Rozenn BAILLEUL-LESUER,Laura D'ALESSANDRO,Alison WHYTE,John W. BOWEN,Michel MENU,Gerard MOUROU. Terahertz pulse imaging in archaeology[J]. Front. Optoelectron., 2015, 8(1): 81-92.
[6] Jingle LIU,Xi-Cheng ZHANG. Terahertz radiation-enhanced-emission-of-fluorescence[J]. Front. Optoelectron., 2014, 7(2): 156-198.
[7] I-Chen HO,Xi-Cheng ZHANG. Application of broadband terahertz spectroscopy in semiconductor nonlinear dynamics[J]. Front. Optoelectron., 2014, 7(2): 220-242.
[8] Li LIU, Ze ZHANG. Facile solvothermal synthesis and photoconductivity of one-dimensional organic Cd(II)-Schiff-base nanoribbons[J]. Front Optoelec Chin, 2011, 4(2): 199-203.
[9] Chunyan WU, Li WANG, Zihan ZHANG, Xiwei ZHANG, Qiang PENG, Jiajun CAI, Yongqiang YU, Huier GUO, Jiansheng JIE. Synthesis and optoelectronic properties of silver-doped n-type CdS nanoribbons[J]. Front Optoelec Chin, 2011, 4(2): 161-165.
[10] Tongfu SU, Bin YU, Pengyu HAN, Guozhong ZHAO, Changrong GONG. Characterization of spectra of lignin from midribs of tobacco at THz frequencies[J]. Front Optoelec Chin, 2009, 2(3): 244-247.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed