Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2015, Vol. 8 Issue (4) : 439-444    https://doi.org/10.1007/s12200-015-0492-0
RESEARCH ARTICLE
High efficiency yellow fluorescent organic light emitting diodes based on m-MTDATA/BPhen exciplex
Liping ZHU,Kai XU,Yanping WANG,Jiangshan CHEN,Dongge MA()
State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Changchun 130022, China
 Download: PDF(810 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

High efficient yellow organic light emitting diodes (OLEDs) based on exciplex were reported. The exciplex was formed by 4, 4′, 4′′-tris [3-methylphenyl (phenyl) amino]-triphenylamine (m-MTDATA) and 4, 7-diphenyl-1, 10-phenanthroline (BPhen). The resulting yellow OLEDs exhibited an external quantum efficiency of over 7%, which is attributed to the effective energy back transfer from exciplex triplet state to exciplex singlet state. The maximum power efficiency of 25 lm/W was achieved. Doping a yellow phosphor Ir(bt)2(acac) into m-MTDATA:BPhen blend, a high efficiency device was achieved with a turn-on voltage of 2.1 V, maximum power efficiency and external quantum efficiency of 86.1 lm/W and 20.7%, respectively.

Keywords organic light-emitting diodes (OLEDs)      fluorescent      exciplex     
Corresponding Author(s): Dongge MA   
Just Accepted Date: 04 June 2015   Online First Date: 30 June 2015    Issue Date: 24 November 2015
 Cite this article:   
Liping ZHU,Kai XU,Yanping WANG, et al. High efficiency yellow fluorescent organic light emitting diodes based on m-MTDATA/BPhen exciplex[J]. Front. Optoelectron., 2015, 8(4): 439-444.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-015-0492-0
https://academic.hep.com.cn/foe/EN/Y2015/V8/I4/439
Fig.1  

(a) Normalized PL spectra of m-MTDATA (black line), BPhen (blue line) and m-MTDATA:BPhen (molar ratio of 1:1, orange line) at room temperature (RT) (solid line) and 77 K (dash dot line); (b) schematic diagram of device structure and its energy levels, and the chemical structures of m-MTDATA and BPhen are given in inset; (c) energy levels of m-MTDATA and BPhen, and their exciplex. S1: singlet; T1: triplet; S0: ground state; ISC: intersystem crossing; RISC: reverse intersystem crossing

Fig.2  

Transient PL spectra of m-MTDAT (black), Bphen (blue) and m-MTDATA:BPhen (molar ratio of 1:1, red). Inset gives fluorescence decay lifetimes values that are recorded at exciting wavelength of 375 nm (in nanoseconds)

Fig.3  

External quantum efficiencies (EQEs) (a) and power efficiencies (PEs) and (b) of the device 1 (black square), device 2 (red up triangle) and device 3 (blue down triangle). Solid lines in (a) are the fitting of TTA model

Fig.4  

EL spectra of the three devices at a applied voltage of 4 V. Inset shows the EL spectra of device 2 at applied voltages from 3 to 8 V

Fig.5  

Performance of Ir(bt)2(acac) doped device: (a) current density-voltage-luminance properties; (b) power efficiency (PE) and external quantum efficiency (EQE); (c) EL spectrum at the driving voltage of 5 V

1 Reineke  S, Lindner  F, Schwartz  G, Seidler  N, Walzer  K, Lüssem  B, Leo  K. White organic light-emitting diodes with fluorescent tube efficiency. Nature, 2009, 459(7244): 234–238
https://doi.org/10.1038/nature08003 pmid: 19444212
2 Wang  Z B, Helander  M G, Qiu  J, Puzzo  D P, Greiner  M T, Hudson  Z M, Wang  S, Liu  Z W, Lu  Z H. Unlocking the full potential of organic light-emitting diodes on flexible plastic. Nature Photonics, 2011, 5(12): 753–757
https://doi.org/10.1038/nphoton.2011.259
3 Sasabe  H, Kido  J. Recent progress in phosphorescent organic light-emitting devices. European Journal of Organic Chemistry, 2013, 2013(34): 7653–7663
https://doi.org/10.1002/ejoc.201300544
4 Lee  C W, Lee  J Y. Above 30% external quantum efficiency in blue phosphorescent organic light-emitting diodes using pyrido[2,3-b]indole derivatives as host materials. Advanced Materials, 2013, 25(38): 5450–5454
https://doi.org/10.1002/adma.201301091 pmid: 23788128
5 Li  W, Liu  D, Shen  F, Ma  D, Wang  Z, Feng  T, Xu  Y, Yang  B, Ma  Y. A twisting donor-acceptor molecule with an intercrossed excited state for highly efficient, deep-blue electroluminescence. Advanced Functional Materials, 2012, 22(13): 2797–2803
https://doi.org/10.1002/adfm.201200116
6 Kondakov  D Y, Pawlik  T D, Hatwar  T K, Spindler  J P. Triplet annihilation exceeding spin statistical limit in highly efficient fluorescent organic light-emitting diodes. Journal of Applied Physics, 2009, 106(12): 124510
https://doi.org/10.1063/1.3273407
7 Endo  A, Ogasawara  M, Takahashi  A, Yokoyama  D, Kato  Y, Adachi  C. Thermally activated delayed fluorescence from Sn4+-porphyrin complexes and their application to organic light emitting diodes—a novel mechanism for electroluminescence. Advanced Materials, 2009, 21(47): 4802–4806
https://doi.org/10.1002/adma.200900983 pmid: 21049498
8 Zhang  Q, Li  B, Huang  S, Nomura  H, Tanaka  H, Adachi  C. Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescenc. Nature Photonics, 2014, 8(4): 326–332
https://doi.org/10.1038/nphoton.2014.12
9 Goushi  K, Yoshida  K, Sato  K, Adachi  C. Organic light-emitting diodes employing efficient reverse intersystem crossing for triplet-to-singlet state conversion. Nature Photonics, 2012, 6(4): 253–258
https://doi.org/10.1038/nphoton.2012.31
10 Goushi  K, Adachi  C. Efficient organic light-emitting diodes through up-conversion from triplet to singlet excited states of exciplexes. Applied Physics Letters, 2012, 101(2): 023306
https://doi.org/10.1063/1.4737006
11 Tsang  S W, So  S K, Xu  J B. Application of admittance spectroscopy to evaluate carrier mobility in organic charge transport materials. Journal of Applied Physics, 2006, 99(1): 013706
https://doi.org/10.1063/1.2158494
12 Naka  S, Okada  H, Onnagawa  H, Tsutsui  T. High electron mobility in bathophenanthroline. Applied Physics Letters, 2000, 76(2): 197–199
https://doi.org/10.1063/1.125701
13 Adachi  C, Baldo  M A, Forrest  S R. Electroluminescence mechanisms in organic light emitting devices employing a europium chelate doped in a wide energy gap bipolar conducting host. Journal of Applied Physics, 2000, 87(11): 8049–8055
https://doi.org/10.1063/1.373496
14 Lamansky  S, Djurovich  P, Murphy  D, Abdel-Razzaq  F, Lee  H E, Adachi  C, Burrows  P E, Forrest  S R, Thompson  M E. Highly phosphorescent bis-cyclometalated iridium complexes: synthesis, photophysical characterization, and use in organic light emitting diodes. Journal of the American Chemical Society, 2001, 123(18): 4304–4312
https://doi.org/10.1021/ja003693s pmid: 11457197
15 Park  Y S, Kim  K H, Kim  J J. Efficient triplet harvesting by fluorescent molecules through exciplexes for high efficiency organic light-emitting diodes. Applied Physics Letters, 2013, 102(15): 153306
https://doi.org/10.1063/1.4802716
16 Hung  W Y, Fang  G C, Chang  Y C, Kuo  T Y, Chou  P T, Lin  S W, Wong  K T. Highly efficient bilayer interface exciplex for yellow organic light-emitting diode. ACS Applied Materials & Interfaces, 2013, 5(15): 6826–6831
https://doi.org/10.1021/am402032z pmid: 23848982
17 Lee  S, Kim  K H, Limbach  D, Park  Y S, Kim  J J. Low roll-off and high efficiency orange organic light emitting diodes with controlled co-doping of green and red phosphorescent dopants in an exciplex forming co-host. Advanced Functional Materials, 2013, 23(33): 4105–4110
https://doi.org/10.1002/adfm.201300187
18 Kim  S Y, Jeong  W I, Mayr  C, Park  Y S, Kim  K H, Lee  J H, Moon  C K, Brutting  W, Kim  J J. Organic light-emitting diodes with 30% external quantum efficiency based on a horizontally oriented emitter. Advanced Functional Materials, 2013, 23(31): 3896–3900
https://doi.org/10.1002/adfm.201300104
19 Park  Y S, Lee  S, Kim  K H, Kim  S Y, Lee  J H, Kim  J J. Exciplex-forming co-host for organic light-emitting diodes with ultimate efficiency. Advanced Functional Materials, 2013, 23(39): 4914–4920
https://doi.org/10.1002/adfm.201300547
20 Seino  Y, Sasabe  H, Pu  Y J, Kido  J. High-performance blue phosphorescent OLEDs using energy transfer from exciplex. Advanced Materials, 2014, 26(10): 1612–1616
https://doi.org/10.1002/adma.201304253 pmid: 24452829
[1] Yulia S. MAKLYGINA, Alexei S. SKOBELTSIN, Tatiana A. SAVELIEVA, Galina V. PAVLOVA, Ivan V. CHEKHONIN, Olga I. GURINA, Anastasiya A. Chernysheva, Sergey A. Cherepanov, Victor B. LOSCHENOV. Study of possibility of cell recognition in brain tumors[J]. Front. Optoelectron., 2020, 13(4): 371-380.
[2] Dmitry V. YAKOVLEV, Dina S. FARRAKHOVA, Artem A. SHIRYAEV, Kanamat T. EFENDIEV, Maxim V. LOSCHENOV, Liana M. AMIRKHANOVA, Dmitry O. KORNEV, Vladimir V. LEVKIN, Igor V. RESHETOV, Victor B. LOSCHENOV. New approaches to diagnostics and treatment of cholangiocellular cancer based on photonics methods[J]. Front. Optoelectron., 2020, 13(4): 352-359.
[3] Luhua LAN, Jianhua ZOU, Congbiao JIANG, Benchang LIU, Lei WANG, Junbiao PENG. Inkjet printing for electroluminescent devices: emissive materials, film formation, and display prototypes[J]. Front. Optoelectron., 2017, 10(4): 329-352.
[4] Jinzhao HUANG, Minghui SHAO, Xijin XU. Transient and stable electroluminescence properties of alternating-current biased organic light-emitting diodes[J]. Front Optoelec, 2012, 5(3): 279-283.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed