Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2016, Vol. 9 Issue (4) : 609-615    https://doi.org/10.1007/s12200-015-0515-x
RESEARCH ARTICLE
Off-axis three-mirror reflective zoom system based on freeform surface
Guijuan XIE,Jun CHANG(),Ke ZHANG,Jide ZHOU,Yajun NIU
School of Optoelectronics, Beijing Institute of Technology, Beijing 100081, China
 Download: PDF(413 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A reflective optical system is not affected by chromatic aberration, so it has a wide range of applications. Based on the design theory of reflective zoom system with three mirrors, this paper presents the simulation, optimization, and image quality evaluation of the traditional off-axis three-mirror zoom system and freeform off-axis three-mirror reflective zoom system.. In these systems, the optical design was aided by software CODEV. Through the analysis of aberrations and structural performance for the traditional aspherical off-axis three-mirror system, the freeform surface was introduced to the tertiary mirror to improve the balance capacity for optical aberrations. This off-axis three-mirror reflective zoom system based on freeform surface could provide technical reference to the study of such systems.

Keywords off-axis system design      three-mirror reflective zoom system      freeform surface      optical design     
Corresponding Author(s): Jun CHANG   
Just Accepted Date: 17 September 2015   Online First Date: 26 October 2015    Issue Date: 29 November 2016
 Cite this article:   
Guijuan XIE,Jun CHANG,Ke ZHANG, et al. Off-axis three-mirror reflective zoom system based on freeform surface[J]. Front. Optoelectron., 2016, 9(4): 609-615.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-015-0515-x
https://academic.hep.com.cn/foe/EN/Y2016/V9/I4/609
mirror radius/mm separation/mm conic
f = 25 f = 75
primary mirror 49.0623 − 34.7492 − 10.0215 0.4864
secondary mirror 62.3761 55.8540 97.1031 0.1222
tertiary mirror − 219.3012 − 9.1145 − 74.9965 − 11.31235
Tab.1  Off-axis three-mirror zoom optical system structure parameters
Fig.1  Off-axis optical system structural diagram. (a) f = 25 mm; (b) f = 75 mm
Fig.2  Three reflective zoom optical system MTF. (a) f = 25 mm; (b) f = 75 mm
mirror radius/mm separation/mm aspherical coefficients
f = 25 f = 75 conic 4th 6th 8th 10th
primary mirror 38.3783 − 18.0437 − 6.5437 0.5517 − 5.9840E − 007 − 5.9022E−010 0 0
secondary mirror 43,4576 39.1537 79.4389 0.1363 − 5.0966E − 008 −2.0755E−011 0 0
tertiary mirror − 210.3284 − 11.3329 − 62.7483 − 0.1728 1.6011E − 007 1.8344E−010 0 0
Tab.2  High-order three off-axis aspheric mirrors focus optical system structure parameters
Fig.3  MTF value after optimization of higher order aspherical coefficients. (a) f = 25 mm; (b) f = 75 mm
Fig.4  MTF after the change of three anti-zoom optical system. (a) f = 25 mm; (b) f = 75 mm
Fig.5  MTF of FOV= 4° × 5°− 4° × 15°. (a) f = 25 mm; (b) f = 75 mm
Fig.6  MTF of FOV= 6° × 8°− 6° × 23°. (a) f = 25 mm; (b) f = 75 mm
Fig.7  MTF of FOV= 8° × 10°− 8° × 28°. (a) f = 25 mm; (b) f = 75 mm
mirror radius/mm separation/mm conic
f = 25 f = 75
primary mirror 40.6620 − 27.0010 − 10.0121 06100
secondary mirror 53.1010 48.5302 60.7743 0.1022
tertiary mirror − 341.9011 − 10.1226 − 38.5029 4.9509
Tab.3  Optical system structural parameters
polynomial coefficients polynomial coefficients
X −0021 X3Y −6.7310E−009
Y 0.0372 X2Y2 −5.3161E−007
X2 −0.0034 XY3 5.1208E−007
XY 0.0002 Y4 1.8509E−006
Y2 −0.0041 X5 −1.5608E−010
X3 3.6674E−008 X4Y −2.8325E−009
X2Y 8.2996E−006 X3Y2 −1.0654E−010
XY2 −1.5412E−005 X2Y3 2.8539E−008
Y3 5.2632E−005 XY4 −6.3283E−009
X4 2.8398E−007 Y5 3.2166E−008
Tab.4  XY polynomial coefficients
1 Zhu J, Hou W, Zhang X D, Jin G F. Design of a low F-number freeform off-axis three-mirror system with rectangular field-of-view. Journal of Optics, 2015, 17(1): 015605
https://doi.org/10.1088/2040-8978/17/1/015605
2 Fuerschbach K, Rolland J P, Thompson K P. Theory of aberration fields for general optical systems with freeform surfaces. Optics Express, 2014, 22(22): 26585–26606
https://doi.org/10.1364/OE.22.026585 pmid: 25401809
3 Xue D L, Zheng L G, Zhang F. Off-axis three-mirror system based on freeform mirror. Optics and Precision Engineering, 2011, 19(12): 2814–2815
4 Zhenrong Z, Xiang H, Xu L. Freeform surface lens for LED uniform illumination. Applied Optics, 2009, 48(35): 6627–6634
https://doi.org/10.1364/AO.48.006627 pmid: 20011002
5 Chen E G, Yu F H. Design of LED-based reflector-array module for specific illuminance distribution. Optics Communications, 2013, 289: 19–27
https://doi.org/10.1016/j.optcom.2012.09.082
6 Cheng D, Wang Y, Xu C, Song W, Jin G. Design of an ultra-thin near-eye display with geometrical waveguide and freeform optics. Optics Express, 2014, 22(17): 20705–20719
https://doi.org/10.1364/OE.22.020705 pmid: 25321274
7 Yang B, Wang Y T. Computer-aided design of freeform reflector. Acta Optica Sinica, 2004, 24(6): 721–724
8 Cheng D W, Wang Y T, Chang J, Liu Y, Xu K. Design of lightweight and wide field-of-view HMD system with free-form-surface prism. Hongwai Yu Jiguang Gongcheng, 2007, 36(3): 309–311 (in Chinese)
9 Zhan T C, Wang Y T, Chang J, Talha M M. Design of reflective zoom system with three mirrors. Acta Optica Sinica, 2010, 30(10): 3034–3038 (in Chinese)
https://doi.org/10.3788/AOS20103010.3034
10 Zhang T C, Wang Y T, Chang J. Design of unobscured reflective zoom system with three mirrors. Chinese Optics Letters, 2010, 8(7): 701–705
https://doi.org/10.3788/COL20100807.0701
[1] Xi WANG,Jun CHANG,Yajun NIU,Xiaoyu DU,Ke ZHANG,Guijuan XIE,Bochuan ZHANG. Design and demonstration of a foveated imaging system with reflective spatial light modulator[J]. Front. Optoelectron., 2017, 10(1): 89-94.
[2] Jun CHANG,Guijuan XIE,Lifei ZHANG,Yao XU,Jide ZHOU,Shengyi YANG. Design of four mirror inverted telephoto zoom system[J]. Front. Optoelectron., 2016, 9(4): 599-608.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed