Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2015, Vol. 8 Issue (3) : 274-281    https://doi.org/10.1007/s12200-015-0522-y
RESEARCH ARTICLE
Blue fluorophores comprised of tetraphenylethene and imidazole: aggregation-induced emission and electroluminescence
Jiayun XIANG1,Han NIE2,Yibin JIANG3,Jian ZHOU1,Hoi Sing KWOK3,Zujin ZHAO1,2,*(),Ben Zhong TANG2,4,*()
1. College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
2. Guangdong Innovative Research Team, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
3. Center for Display Research, The Hong Kong University of Science & Technology, Kowloon, Hong Kong, China
4. Department of Chemistry, Division of Biomedical Engineering, Division of Life Science, The Hong Kong University of Science & Technology, Kowloon, Hong Kong, China
 Download: PDF(1336 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

By melting tetraphenylethene (TPE) and 1,2,4,5-tetraphenyl-1H-imidazole (TPI) units together through different linking positions, three new fluorophores are synthesized, and their optical, electronic and electroluminescence (EL) properties are fully studied. Owing to the presence of TPE unit(s), these fluorophores are weak emitters in solutions, but are induced to emit strongly in the aggregated state, presenting typical aggregation-induced emission characteristics. The experimental and computational results reveal that different connection patterns between TPE and TPI could impact the molecular conjugation greatly, leading to varied emission wavelength, fluorescence quantum yield and EL performance in organic light emitting diodes (OLEDs). The fluorophore built by attaching TPE unit to the 1-position of imidazole ring shows bluest fluorescence, and its EL device emits at deep blue region (445 nm; CIE= (0.16, 0.15)). And the device based on the fluorophore by linking TPE to the 2-position of imidazole ring shows EL at 467 nm (CIE= (0.17, 0.22)) with good efficiencies of 3.17 cd·A-1, and 1.77%.

Keywords aggregation-induced emission (AIE)      tetraphenylethene (TPE)      imidazole      blue fluorescence      organic light emitting diode (OLED)     
Corresponding Author(s): Zujin ZHAO,Ben Zhong TANG   
Just Accepted Date: 12 June 2015   Online First Date: 17 August 2015    Issue Date: 18 September 2015
 Cite this article:   
Jiayun XIANG,Han NIE,Yibin JIANG, et al. Blue fluorophores comprised of tetraphenylethene and imidazole: aggregation-induced emission and electroluminescence[J]. Front. Optoelectron., 2015, 8(3): 274-281.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-015-0522-y
https://academic.hep.com.cn/foe/EN/Y2015/V8/I3/274
Fig.1  Scheme 1 Molecular structures and synthesis of the new fluorophores
Fig.2  (a) Absorption spectra in THF solutions (10-5 M) and (b) PL spectra in solid films of the new fluorophores
λabsa)/nmλemb)/nmΦFc)/%(HOMO/LUMO)d) /eVEopte)/eV
solnfilm
13374900.172.8-5.51 (-5.27)/-2.31 (-1.48)3.20
22904691.337.0-5.78 (-5.44)/-2.30 (-1.48)3.48
33074821.050.7-5.53 (-5.26)/-2.33 (-1.50)3.20
Tab.1  Optical properties and energy levels of the new fluorophores
Fig.3  CV curves of the new fluorophores in acetonitrile solution with 0.1 M tetrabutylammonium hexafluorophosphate as the supporting electrolyte at a scan rate of 50 mV·s-1
Fig.4  Calculated molecular orbital amplitude plots of HOMOs and LUMOs for the new fluorphores
Fig.5  (a) EL spectra; (b) current density-voltage-luminance characteristics; and (c) changes in current efficiency with the current density in multilayer EL devices of these new fluorophores [ITO/NPB (60 nm)/EML (20 nm)/TPBi (40 nm)/LiF (1 nm)/Al (100 nm)]
EMLλEL/nmVon/VLmax/(cd·m-2)ηC/(cd·A-1)ηP/(lm·W-1)EQE/%CIE(x, y)
14673.655603.122.721.77(0.17, 0.22)
24453.936200.960.750.72(0.16, 0.15)
34954.451103.972.431.58(0.21, 0.38)
Tab.2  EL performance of the new fluorophoresa)
1 Farinola G M, Ragni R. Electroluminescent materials for white organic light emitting diodes. Chemical Society Reviews, 2011, 40(7): 3467―3482
https://doi.org/10.1039/c0cs00204f pmid: 21437308
2 Samuel I D W, Turnbull G A. Organic semiconductor lasers. Chemical Reviews, 2007, 107(4): 1272―1295
https://doi.org/10.1021/cr050152i pmid: 17385928
3 Basabe-Desmonts L, Reinhoudt D N, Crego-Calama M. Design of fluorescent materials for chemical sensing. Chemical Society Reviews, 2007, 36(6): 993―1017
https://doi.org/10.1039/b609548h pmid: 17534482
4 Valeur B. Molecular Fluorescence: Principles and Applications. London: Wiley, 2001, 74―84
5 Grimsdale A C, Chan K L, Martin R E, Jokisz P G, Holmes A B. Synthesis of light-emitting conjugated polymers for applications in electroluminescent devices. Chemical Reviews, 2009, 109(3): 897―1091
https://doi.org/10.1021/cr000013v pmid: 19228015
6 Gaylord B S, Wang S, Heeger A J, Bazan G C. Water-soluble conjugated oligomers: effect of chain length and aggregation on photoluminescence-quenching efficiencies. Journal of the American Chemistry Society, 2001, 123(26): 6417―6418
https://doi.org/10.1021/ja010373f pmid: 11427069
7 Luo J, Xie Z, Lam J W Y, Cheng L, Chen H, Qiu C, Kwok H S, Zhan X, Liu Y, Zhu D, Tang B Z. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chemical Communications, 2001, 18(18): 1740―1741
https://doi.org/10.1039/b105159h pmid: 12240292
8 Mei J, Hong Y, Lam J W Y, Qin A, Tang Y, Tang B Z. Aggregation-induced emission: the whole is more brilliant than the parts. Advanced Materials, 2014, 26(31): 5429―5479
https://doi.org/10.1002/adma.201401356 pmid: 24975272
9 Zhao Z, Lu P, Lam J W Y, Wang Z, Chan C Y K, Sung H H Y, Williams I D, Ma Y, Tang B Z. Molecular anchors in the solid state: restriction of intramolecular rotation boosts emission efficiency of fluorophore aggregates to unity. Chemical Science (Cambridge), 2011, 2(4): 672―675
https://doi.org/10.1039/C0SC00521E
10 Chen L, Jiang Y, Nie H, Hu R, Kwok H S, Huang F, Qin A, Zhao Z, Tang B Z. Rational design of aggregation-induced emission luminogen with weak electron donor-acceptor interaction to achieve highly efficient undoped bilayer OLEDs. ACS Applied Materials & Interfaces, 2014, 6(19): 17215―17225
https://doi.org/10.1021/am505036a pmid: 25254940
11 Liu Y, Chen S, Lam J W Y, Lu P, Kwok R T K, Mahtab F, Kwok H S, Tang B Z.Tuning the electronic nature of aggregation-induced emission fluorophores with enhanced hole-transporting property. Chemistry of Materials, 2011, 23(10): 2536―2544
https://doi.org/10.1021/cm2003269
12 Chou H H, Chen Y H, Hsu H P, Chang W H, Chen Y H, Cheng C H. Synthesis of diimidazolylstilbenes as n-type blue fluorophores: alternative dopant materials for highly efficient electroluminescent devices. Advanced Materials, 2012, 24(43): 5867―5871
https://doi.org/10.1002/adma.201202222 pmid: 22915130
13 Nagarajan N, Prakash A, Velmurugan G, Shakti N, Katiyar M, Venuvanalingam P, Renganathan R. Synthesis, characterisation and electroluminescence behaviourof π-conjugated imidazole-isoquinoline derivatives. Dyes and Pigments, 2014, 102: 180―188
https://doi.org/10.1016/j.dyepig.2013.11.002
14 Li W, Yao L, Liu H, Wang Z, Zhang S, Xiao R, Zhang H, Lu P, Yang B, Ma Y. Highly efficient deep-blue OLED with anextraordinarily narrow FHWM of 35 nm and a γ coordinate<0.05 based on a fully twisting donor-acceptor molecule. Journal of Materials Chemistry C, 2014, 2(24): 4733&horbar;4736
https://doi.org/10.1039/C4TC00487F
15 Ma C, Xu B, Xie G, He J, Zhou X, Peng B, Jiang L, Xu B, Tian W, Chi Z, Liu S, Zhang Y, Xu J. An AIE-active luminophore with tunable and remarkable fluorescence switching based on the piezo and protonation-deprotonation control. Chemical Communications, 2014, 50(55): 7374&horbar;7377
https://doi.org/10.1039/c4cc01012d pmid: 24872230
16 Luo M, Zhou X, Chi Z, Liu S, Zhang Y, Xu J. Fluorescence-enhanced organogelators with mesomorphic and piezofluorochromic properties based on tetraphenylethylene and gallic acid derivatives. Dyes and Pigments, 2014, 101: 74&horbar;84
https://doi.org/10.1016/j.dyepig.2013.08.026
17 Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A Jr, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam N J, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas ?, Foresman J B, Ortiz J V, Cioslowski J, Fox D J. Gaussian 09, Revision D.01. Gaussian Inc. Wallingford CT, 2009
18 Huang J, Sun N, Dong Y, Tang R, Lu P, Cai P, Li Q, Ma D, Qin J, Li Z. Similar or totally different: the control of conjugation degree through minor structural modifications, and deep-blue aggregation-induced emissionluminogens for non-doped OLEDs. Advanced Functional Materials, 2013, 23(18): 2329&horbar;2337
https://doi.org/10.1002/adfm.201202639
19 Zhao Z, Chen S, Shen X, Mahtab F, Yu Y, Lu P, Lam J W Y, Kwok H S, Tang B Z. Aggregation-induced emission, self-assembly, and electroluminescence of 4,4′-bis(1,2,2-triphenylvinyl)biphenyl. Chemical Communications, 2010, 46(5): 686&horbar;688
https://doi.org/10.1039/B915271G pmid: 20087487
20 Zhao Z, Chen S, Lam J W Y, Lu P, Zhong Y, Wong K S, Kwok H S, Tang B Z. Creation of highly efficient solid emitter by decorating pyrene core with AIE-active tetraphenylethene peripheries. Chemical Communications, 2010, 46(13): 2221&horbar;2223
https://doi.org/10.1039/b921451h pmid: 20234912
[1] Neha JAIN, O. P. SINHA, Sujata PANDEY. Optimization of organic light emitting diode for HAT-CN based nano-structured device by study of injection characteristics at anode/organic interface[J]. Front. Optoelectron., 2019, 12(3): 268-275.
[2] Nuo-Hua XIE, Ying CHEN, Huan YE, Chong LI, Ming-Qiang ZHU. Progress on photochromic diarylethenes with aggregation induced emission[J]. Front. Optoelectron., 2018, 11(4): 317-332.
[3] Wen-Liang GONG, Zhe HU?§?, Chong LI, Guo-Feng ZHANG, Tao CHEN, Matthew. P. ALDRED, Zhen-Li HUANG, Ming-Qiang ZHU. Condensed state fluorescence switching of hexaarylbiimidazole-tetraphenylethene conjugate for super-resolution fluorescence nanolocalization[J]. Front Optoelec, 2013, 6(4): 458-467.
[4] Lei DING, Fanghui ZHANG, Qian JIANG, Honggang YAN, Dinghan LIU. Carrier radiation distribution in organic light-emitting diodes[J]. Front Optoelec Chin, 2010, 3(4): 387-393.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed