Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2015, Vol. 8 Issue (3) : 289-297    https://doi.org/10.1007/s12200-015-0527-6
RESEARCH ARTICLE
Improvement of electrical and photovoltaic properties of methyl red dye based photoelectrochemical cells in presence of single walled carbon nanotubes
Sujata CHAKRABORTY,Nabin Baran MANIK()
Condensed Matter Physics Research Center, Department of Physics, Jadavpur University, Kolkata 700032, India
 Download: PDF(723 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this work, we investigated the effect of single walled carbon nanotubes (SWCNT) on the electrical and photovoltaic properties of methyl red (MR) dye based photoelectrochemical cell (PEC). MR dye based PEC with LiClO4 as ion salt were fabricated with and without mixing SWCNT. The cells were characterized through electrical and optical measurements. The performance of the devices changed drastically in presence of SWCNT. The transition voltage and trap energy of the cells were estimated from the steady-state dark current voltage (I-V) analysis. The transition voltage and trap energy decreased for MR dye cell in presence of SWCNT. Open circuit voltage (Voc), short circuit current (Jsc), fill factor (FF) and power conversion efficiency (η) increased due to the addition of SWCNT. Further measurement of the transient photocurrent showed that the growth and decay of photocurrent was quite faster in presence of SWCNT. The photocurrent decay with time was fitted for both the cells and found to follow a power law relation which indicates dispersive transport mechanism with exponential trap states distributed in between lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) levels. Possible interpretation is done on the lowering of trap energy with the photocurrent. These results suggest that SWCNT lowers the trap energy of the cells by providing efficient percolation pathways for the conduction of charges. It is expected that due to lowering of trap energy the residing time of the free carriers within the traps decreases. In other words, it may also be said that the charge recombination decreases. These factors affect the overall conduction of charges and improve the electrical and photovoltaic properties.

Keywords methyl red (MR)      single walled carbon nanotubes (SWCNT)      photoelectrochemical cell (PEC)      trap energy      percolation pathways     
Corresponding Author(s): Nabin Baran MANIK   
Just Accepted Date: 17 August 2015   Online First Date: 08 September 2015    Issue Date: 18 September 2015
 Cite this article:   
Sujata CHAKRABORTY,Nabin Baran MANIK. Improvement of electrical and photovoltaic properties of methyl red dye based photoelectrochemical cells in presence of single walled carbon nanotubes[J]. Front. Optoelectron., 2015, 8(3): 289-297.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-015-0527-6
https://academic.hep.com.cn/foe/EN/Y2015/V8/I3/289
Fig.1  Structure of (a) methyl red (MR) dye; (b) single walled carbon nanotubes [25]
Fig.2  Schematic diagram of the photoelectrochemical cell. Indium tin oxide (ITO) coated glass is used as the front electrode and a thin layer of aluminum (Al) coated on a mylar (M) sheet is used as the back electrode. Here, methyl red (MR) dye is used as a light sensitizer in the ionic blend comprising of LiClO4, PEO, EC and PC
Fig.3  Absorption spectra of methyl red (MR) and single walled carbon nanotube (SWCNT) mixed with MR in distilled water
Fig.4  Dark I-V characteristics for (a) methyl red (MR) dye based cell and (b) single walled carbon nanotube (SWCNT) mixed with MR dye cell
Fig.5  lnI-lnV characteristics for (a) methyl red (MR) dye based cell and (b) single walled carbon nanotube (SWCNT) mixed with MR dye cell
cell type Vth1/V Vth2/V m1 region I m2 region II m3 region III Ec in region II/eV
MR cell without SWCNT 2.52 4.2 1.19 4.61 1.99 0.091
MR cell with SWCNT 1.99 3.55 1.13 3.42 0.33 0.061
Tab.1  Extraction of values of ‘m’ and trap energy ‘Ec’ from lnI-lnV curves
cell type cell area/cm2 Jsc/(μA·cm-2) Voc/mV FF η/10-2%
MR cell without SWCNT 1.5 296.92 79.35 0.38 1.12
MR cell with SWCNT 1.5 734.26 195 0.48 68.7
Tab.2  Different photovoltaic parameters extracted from the light I-V curves
Fig.6  Photovoltaic characteristics of (a) methyl red (MR) cell and (b) single walled carbon nanotube (SWCNT) mixed with MR cell. Different photovoltaic parameters such Voc, Jsc, FF and η have been extracted from the curves, the values of which are shown in Table 2
Fig.7  Pulsed photocurrent measurements for (a) only (a) methyl red (MR) cell and (b) single walled carbon nanotube (SWCNT) mixed with MR cell
Fig.8  Pulsed photocurrent measurements of (a) (a) methyl red (MR) cell and (b) single walled carbon nanotube (SWCNT) mixed with MR for an incident radiation of 100 mW/cm2
Fig.9  Determination of decay constant from lnI-lnt curves for (a) methyl red (MR) cell without single walled carbon nanotube (SWCNT) and (b) MR cell with SWCNT
Fig.10  (a) Charging and (b) discharging of trapped carriers during photocurrent growth and decay
Parameter without SWCNT with SWCNT
trap energy (Ec) 0.172 eV 0.062 eV
transition voltage (Vth1) 2.52 V 1.99 V
transition voltage (Vth2) 3.55 V 4.2 V
short circuit current (Jsc) 296.92 μA/cm2 734.26 μA/cm2
open circuit voltage (Voc) 79.35 mV 195 mV
fill factor (FF) 0.38 0.48
decay constant 0.055 0.096
Tab.3  Comparison of the different parameters extracted from the electrical and optical measurement of the MR cells with and without SWCNT
1 Gr?tzel M. Photoelectrochemical cells. Nature, 2001, 414(6861): 338–344
https://doi.org/10.1038/35104607 pmid: 11713540
2 Hagberg D P, Marinado T, Karlsson K M, Nonomura K, Qin P, Boschloo G, Brinck T, Hagfeldt A, Sun L. Tuning the HOMO and LUMO energy levels of organic chromophores for dye sensitized solar cells. Journal of Organic Chemistry, 2007, 72(25): 9550–9556
https://doi.org/10.1021/jo701592x pmid: 17979286
3 Haldar A, Maity S, Manik N B. Electrical and photovoltaic characterisations of methyl red dye doped solid-state photoelectrochemical cell. Ionics, 2009, 15(1): 79–83
https://doi.org/10.1007/s11581-008-0237-9
4 Burke D J, Lipomi D J. Green chemistry for organic solar cells. Energy & Environmental Science, 2013, 6(7): 2053–2066
https://doi.org/10.1039/c3ee41096j
5 Hardin B E, Snaith H J, McGehee M D. The renaissance of dye-sensitized solar cells. Nature Photonics, 2012, 6(3): 162–169
https://doi.org/10.1038/nphoton.2012.22
6 Li G, Zhu R, Yang Y. Polymer solar cells. Nature Photonics, 2012, 6(3): 153–161
https://doi.org/10.1038/nphoton.2012.11
7 Islam M R, Maity S, Haldar A, Manik N B, Basu A N. Photocurrent growth and decay behaviour of crystal violet dye-based photoelectrochemical cell in photovoltaic mode. Ionics, 2012, 18(1–2): 209–214
https://doi.org/10.1007/s11581-011-0586-7
8 Singh P K, Jadhav N A, Mishra S K, Singh U P, Bhattacharya B. Application of ionic liquid doped solid polymer electrolyte. Ionics, 2010, 16(7): 645–648
https://doi.org/10.1007/s11581-010-0446-x
9 Fredin K, Nissfolk J, Boschloo G, Hagfeldt A. The influence of cations on charge accumulation in dye sensitized solar cells. Journal of Electroanalytical Chemistry, 2007, 609(2): 55–60
https://doi.org/10.1016/j.jelechem.2007.05.013
10 Shuttle C G, Treat N D, Douglas J D, Fréchet J M J, Chabinyc M L. Deep energetic trap states in organic photovoltaic devices. Advanced Energy Materials, 2012, 2(1): 111–119
https://doi.org/10.1002/aenm.201100541
11 Walker A B, Peter L M, Martínez D, Lobato K. Transient photocurrents in dye-sensitized nanocrystalline solar cells. CHIMIA International Journal for Chemistry, 2007, 61(12): 792–795
https://doi.org/10.2533/chimia.2007.792
12 Li C, Duan L, Li H, Qiu Y. Universal trap effect in carrier transport of disordered organic semiconductors: transition from shallow trapping to deep trapping. Journal of Physical Chemistry C, 2014, 118(20): 10651–10660
https://doi.org/10.1021/jp5022906
13 Montero J M, Bisquert J. Trap origin of field-dependent mobility of the carrier transport in organic layers. Solid-State Electronics, 2011, 55(1): 1–4
https://doi.org/10.1016/j.sse.2010.09.009
14 Carr J A, Chaudhary S. On the identification of deeper defect levels in organic photovoltaic devices. Journal of Applied Physics, 2013, 114(6): 064509
15 Mandoc M M, Kooistra F B, Hummelen J C, de Boer B, Blom P W M. Effect of traps on the performance of bulk heterojunction organic solar cells. Applied Physics Letters, 2007, 91(26): 263505
16 Dey S K, Islam M R, Manik N B, Basu A N. Study on the effect of trap levels on steady-state dark I-V characteristics in Safranine-T-based solid-state thin film photoelectrochemical cell. Journal of Materials Science Materials in Electronics, 2002, 13(5): 249–252
https://doi.org/10.1023/A:1015533615278
17 Islam M R, Saha S, Manik N B, Basu A N. Transient current study in Safranine-T dye based organic photo-electrochemical cell using exponentially distributed trap assisted charge transport model. Indian Journal of Physics, 2012, 86(12): 1101–1106
https://doi.org/10.1007/s12648-012-0170-7
18 Chen J, Yan Y, Lin K. Effects of carbon nanotubes on dye-sensitized solar cells. Journal of the Chilean Chemical Society, 2010, 57(5B): 1180–1184
https://doi.org/10.1002/jccs.201000171
19 Hosni M, Kusumawati Y, Farhat S, Jouini N, Pauporté T. Effects of oxide nanoparticle size and shape on electronic structure, charge transport and recombination in dye-sensitized solar cell photoelectrodes. Journal of Physical Chemistry C, 2014, 118 (30): 16791–16798
20 Ausman K D, Piner R, Lourie O, Ruoff R S. Organic solvent dispersions of single-walled carbon nanotubes: towards solutions of pristine nanotubes. Journal of Physical Chemistry B, 2000, 104 (38): 8911–8915
21 Lee K M, Hu C W, Chen H W, Ho K C. Incorporating carbon nanotube in a low-temperature fabrication process for dye-sensitized TiO2 solar cells. Solar Energy Materials and Solar Cells, 2008, 92(12): 1628–1633
https://doi.org/10.1016/j.solmat.2008.07.012
22 Somani S P, Somani P R, Umeno M. Carbon nanotube incorporation: a new route to improve the performance of organic-inorganic heterojunction solar cells. Diamond and Related Materials, 2008, 17(4–5): 585–588
https://doi.org/10.1016/j.diamond.2008.01.084
23 Chakraborty S, Manik N B. Effect of COOH-functionalized SWCNT addition on the electrical and photovoltaic characteristics of Malachite Green dye based photovoltaic cells. Journal of Semiconductors, 2014, 35 (12): 124004
24 Maity S, Haldar A, Manik N B. Effect of plasticizer on Safranine-T-dye-based solid-state photo electrochemical cell. Ionics, 2008, 14(6): 549–554
https://doi.org/10.1007/s11581-008-0217-0
25 Alam A, Sachar S, Puri N, Saxena R K. Interactions of polydispersed single-walled carbon nanotubes with T cells resulting in downregulation of allogeneic CTL responses in vitro and in vivo. Nanotoxicology, 2013, 7(8): 1351–1360
https://doi.org/10.3109/17435390.2012.739666 pmid: 23057773
26 Haldar A, Maity S, Manik N B. Effect of back electrode on photovoltaic properties of crystal-violet-dye-doped solid-state thin film. Ionics, 2008, 14(5): 427–432
https://doi.org/10.1007/s11581-007-0194-8
27 Mahmoud M A, Poncheri A, Badr Y, Abd El Wahed M G. Photocatalytic degradation of methyl red dye: research letter. South African Journal of Science, 2009, 105(7–8): 299–303
28 Buitrón G, Quezada M, Moreno G. Aerobic degradation of the azo dye acid red 151 in a sequencing batch biofilter. Bioresource Technology, 2004, 92(2): 143–149
https://doi.org/10.1016/j.biortech.2003.09.001 pmid: 14693446
29 Yang J, Shen J. Effects of discrete trap levels on organic light emitting diodes. Journal of Applied Physics, 1999, 85(5): 2699–2705
https://doi.org/10.1063/1.369587
30 Shen J, Yang J. Physical mechanisms in double-carrier trap-charge limited transport processes in organic electroluminescent devices: A numerical study. Journal of Applied Physics, 1998, 83(12): 7706–7714
https://doi.org/10.1063/1.367942
31 Mark P, Helfrich W. Space-charge-limited currents in organic crystals. Journal of Applied Physics, 1962, 33(1): 205–215
https://doi.org/10.1063/1.1728487
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed