Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2015, Vol. 8 Issue (3) : 269-273    https://doi.org/10.1007/s12200-015-0531-x
RESEARCH ARTICLE
ITO surface modification for inverted organic photovoltaics
Mingzhang DENG,Weina SHI,Chen ZHAO,Bingbing CHEN,Yan SHEN()
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(622 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The work function (WF) of indium-tin-oxide (ITO) substrates plays an important role on the inverted organic photovoltaic device performance. And electrode engineering has been a useful method to facilitate carrier extraction or charge collection to enhance organic photovoltaic (OPV) performance. By using self-assembly technique, we have deposited poly(dimethyl diallylammonium chloride) (PDDA) layers onto ITO coated glass substrates. The results indicate that the surface WF of ITO is reduced by about 0.3 eV after PDDA modification, which is attributed to the modulation in electron affinity. In addition, the surface roughness of ITO substrate became smaller after PDDA modification. These modified ITO substrates can be applied to fabricate inverted OPVs, in which ITO works as the cathode to collect electrons. As a result, the photovoltaic performance of inverted OPV is substantially improved, mainly reflecting on the increase of short circuit current density.

Keywords organic photovoltaic (OPV)      indium tin oxide (ITO)      inverted structure      surface modification      work function (WF)     
Corresponding Author(s): Yan SHEN   
Just Accepted Date: 04 August 2015   Online First Date: 08 September 2015    Issue Date: 18 September 2015
 Cite this article:   
Mingzhang DENG,Weina SHI,Chen ZHAO, et al. ITO surface modification for inverted organic photovoltaics[J]. Front. Optoelectron., 2015, 8(3): 269-273.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-015-0531-x
https://academic.hep.com.cn/foe/EN/Y2015/V8/I3/269
Fig.1  Surface modification of ITO glass substrates with PDDA through electrostatic interaction
Fig.2  AFM images of ITO surface with and without PDDA: (a) and (b) are 2D and 3D AFM images of pristine ITO; (c) and (d) are 2D and 3D AFM images of ITO surface after PDDA modification
Fig.3  Cut-off region in UPS spectrum of ITO modified with and without PDDA in kinetic energy scale
Fig.4  Structure for an inverted organic photovoltaic device using the PDDA modified ITO glass substrate
device VOC/V JSC/(mA· cm-2) FF PCE/%
OPV without PDDA 0.62 6.86 0.43 1.91
OPV with PDDA 0.64 7.38 0.45 2.14
Tab.1  Photovoltaic performance of the organic solar cell device using ITO with and without PDDA modification
Fig.5  I-V curves of organic solar cell devices using ITO modified without/with PDDA
Fig.6  Energy levels in the organic solar cell using ITO modified without/with PDDA
1 Hoppe H, Sariciftci N S. Organic solar cells: an overview. Journal of Materials Research, 2004, 19(7): 1924–1945
https://doi.org/10.1557/JMR.2004.0252
2 Cnops K, Rand B P, Cheyns D, Verreet B, Empl M A, Heremans P. 8.4% efficient fullerene-free organic solar cells exploiting long-range exciton energy transfer. Nature Communications, 2014, 5: 3406
https://doi.org/10.1038/ncomms4406 pmid: 24603622
3 Cao W, Xue J. Recent progress in organic photovoltaics: device architecture and optical design. Energy & Environmental Science, 2014, 7(7): 2123–2144
https://doi.org/10.1039/c4ee00260a
4 J?rgensen M, Norrman K, Krebs F. Stability/degradation of polymer solar cells. Solar Energy Materials and Solar Cells, 2008, 92(7): 686–714
https://doi.org/10.1016/j.solmat.2008.01.005
5 He Z, Zhong C, Su S, Xu M, Wu H, Cao Y. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nature Photonics, 2012, 6(9): 591–595
https://doi.org/10.1038/nphoton.2012.190
6 Zhou Y, Fuentes-Hernandez C, Shim J, Meyer J, Giordano A J, Li H, Winget P, Papadopoulos T, Cheun H, Kim J, Fenoll M, Dindar A, Haske W, Najafabadi E, Khan T M, Sojoudi H, Barlow S, Graham S, Brédas J L, Marder S R, Kahn A, Kippelen B. A universal method to produce low-work function electrodes for organic electronics. Science, 2012, 336(6079): 327–332
https://doi.org/10.1126/science.1218829 pmid: 22517855
7 Min X, Jiang F, Qin F, Li Z, Tong J, Xiong S, Meng W, Zhou Y. Polyethylenimine aqueous solution: a low-cost and environmentally friendly formulation to produce low-work-function electrodes for efficient easy-to-fabricate organic solar cells. ACS Applied Materials & Interfaces, 2014, 6(24): 22628–22633
https://doi.org/10.1021/am5077974 pmid: 25479413
8 Guo Z, Shen Y, Wang M, Zhao F, Dong S. electrochemistry and electrogenerated chemiluminescence of SiO2 nanoparticles/Tris (2,2-bipyridyl)ruthenium(II) multilayer films on Indium Tin oxide electrodes. Analytical Chemistry, 2004, 76(1): 184–191
https://doi.org/10.1021/ac034759f
9 Li L S, Li A D Q, Jia Q X. Effects of self-assembled multilayers on the evolution of surface physical properties of indium-tin-oxide. Applied Surface Science, 2003, 219(3-4): 199–202
https://doi.org/10.1016/S0169-4332(03)00540-3
10 Ma W, Yang C, Gong X, Lee K, Heeger A J. Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Advanced Functional Materials, 2005, 15(10): 1617–1622
https://doi.org/10.1002/adfm.200500211
11 Park Y, Choong V, Gao Y, Hsieh B R, Tang C W. Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy. Applied Physics Letters, 1996, 68(19): 2699–2701
https://doi.org/10.1063/1.116313
12 Manor A, Katz E A. Open-circuit voltage of organic photovoltaics: Implications of the generalized Einstein relation for disordered semiconductors. Solar Energy Materials and Solar Cells, 2012, 97: 132–138
https://doi.org/10.1016/j.solmat.2011.08.022
13 Zhang C, You H, Lin Z, Hao Y. Inverted organic photovoltaic cells with solution-processed zinc oxide as electron collecting layer. Japanese Journal of Applied Physics, 2011, 50(8R): 082302
https://doi.org/10.7567/JJAP.50.082302
14 Zhao D W, Sun X W, Jiang C Y, Kyaw A K K, Lo G Q, Kwong D L. Efficient tandem organic solar cells with an Al/MoO3 intermediate layer. Applied Physics Letters, 2008, 93(8): 083305
https://doi.org/10.1063/1.2976126
15 Tao C, Ruan S, Zhang X, Xie G, Shen L, Kong X, Dong W, Liu C, Chen W. Performance improvement of inverted polymer solar cells with different top electrodes by introducing a MoO3 buffer layer. Applied Physics Letters, 2008, 93(19): 193307
https://doi.org/10.1063/1.3026741
[1] Neha JAIN, O. P. SINHA, Sujata PANDEY. Optimization of organic light emitting diode for HAT-CN based nano-structured device by study of injection characteristics at anode/organic interface[J]. Front. Optoelectron., 2019, 12(3): 268-275.
[2] D. MUTHARASU, S. SHANMUGAN. Thermal resistance of high power LED on surface modified heat sink[J]. Front Optoelec, 2013, 6(2): 160-166.
[3] Minghui DENG, Shuqing HUANG, Zhexun YU, Dongmei LI, Yanhong LUO, Yubai BAI, Qingbo MENG. Enhanced electron injection/transportation by surface states increment in mesoporous TiO2 dye-sensitized solar cells[J]. Front Optoelec Chin, 2011, 4(1): 65-71.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed