Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2016, Vol. 9 Issue (4) : 578-584    https://doi.org/10.1007/s12200-016-0513-7
RESEARCH ARTICLE
All-optical AND/OR/NOT logic gates based on photonic crystal ring resonators
Ashkan PASHAMEHR1,Mahdi ZAVVARI1(),Hamed ALIPOUR-BANAEI2
1. Department of Electrical Engineering, Urmia Branch, Islamic Azad University, Urmia, Iran
2. Department of Electrical Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran
 Download: PDF(812 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Photonic crystal based ring resonators are best choice for designing all-optical devices. In this paper, we used a basic structure of photonic crystal ring resonators and designed all optical logic gates which are working using the Kerr effect. The proposed gates consisted of upper and lower waveguides coupled through a resonator which was designed for dropping of special wavelength. The resonance wavelength was designed for 1550 nm telecom operation wavelength. We used numerical methods such as plane wave expansion and finite difference time domain (FDTD) for performing our simulations and studied the optical properties of the proposed structures. Our results showed that the critical input power for triggering the gate output was lower compared to previously reported gates.

Keywords photonic crystal (PhC)      all optical logic gate      ring resonator      Kerr effect     
Corresponding Author(s): Mahdi ZAVVARI   
Just Accepted Date: 25 December 2015   Online First Date: 14 January 2016    Issue Date: 29 November 2016
 Cite this article:   
Ashkan PASHAMEHR,Mahdi ZAVVARI,Hamed ALIPOUR-BANAEI. All-optical AND/OR/NOT logic gates based on photonic crystal ring resonators[J]. Front. Optoelectron., 2016, 9(4): 578-584.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-016-0513-7
https://academic.hep.com.cn/foe/EN/Y2016/V9/I4/578
Fig.1  Typical ring resonator based on photonic crystals
Fig.2  Field distribution in typical filter based on ring resonator
Fig.3  Band structure diagram for proposed logic AND gate
Fig.4  Transmission spectra for proposed NOT gate when (a) only A input is high; (b) both the A and B inputs are set high. In color figure, the blue curve shows the C port and the green line corresponds to B port
Fig.5  Proposed AND gate structure formed of three waveguide and two ring resonator
Fig.6  Distribution of field in four state for proposed AND gate
output B A
0 0 0
0 1 0
0 0 1
1 1 1
Tab.1  Truth table for proposed AND gate
Fig.7  OR gate structure based on photonic crystal ring resonators
Fig.8  Proposed OR gate procedure for four different input
output B A
0 0 0
1 1 0
1 0 1
1 1 1
Tab.2  OR gate operating modes
Fig.9  Proposed NOT gate structure based on photonic crystal ring resonators
Fig.10  Proposed NOT gate procedure for two different input
1 Sakoda K. Optical Properties of Photonic Crystals. Beilin: Springer, 2005
2 Ozbay E, Guven K, Cubukcu E, Aydin K, Alici B K. Negative refraction and subwavelength focusing using photonic crystals. Modern Physics Letters B, 2004, 18(25): 1275–1291
https://doi.org/10.1142/S0217984904007803
3 Joannopoulos J D, Johnson S G, Winn J N, Meade R D. Photonic Crystals: Molding the Flow of Light. Princeton: Princeton University Press, 2011
4 Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics. Physical Review Letters, 1987, 58(20): 2059–2062
https://doi.org/10.1103/PhysRevLett.58.2059 pmid: 10034639
5 Qiang Z, Zhou W, Soref R A. Optical add-drop filters based on photonic crystal ring resonators. Optics Express, 2007, 15(4): 1823–1831
https://doi.org/10.1364/OE.15.001823 pmid: 19532421
6 Seif-Dargahi H, Zavvari M, Alipour-Banaei H.Very compact photonic crystal resonant cavity for all optical filtering. Journal of Theoretical and Applied Physics, 2014, 8(4): 183−188
7 Alipour-Banaei H, Mehdizadeh F, Serajmohammadi S.A novel 4-channel demultiplexer based on photonic crystal ring resonators. Optik-International Journal for Light and Electron Optics, 2013, 124(23): 5964–5967
8 Lin W P, Hsu Y F, Kuo H L, Beckwith A, Palenskis V, Kumar C, Kirori Z, Ogutu J, Kumar R, Das D. Design of optical nor logic gates using two dimension photonic crystals. American Journal of Modern Physics, 2013, 2(3): 144–147
https://doi.org/10.11648/j.ajmp.20130203.18
9 9.Danaei M, Kaatuzian H. Design and simulation of an all-optical photonic crystal AND gate using nonlinear Kerr effect. Optical and Quantum Electronics, 2012, 44: 27–34
10 10.Yaghoubi E, Ashrafbakhtiar L, Hamidisangdehi S, Adami A. A novel design for all-optical NAND/NOR/XOR gates based on nonlinear directional coupler. Journal of Advances in Computer Research, 2011, 2(4): 51–59
11 Melnichuk M, Wood L T. Direct kerr electro-optic effect in noncentrosymmetric materials. Physical Review A., 2010, 82(1): 013821
https://doi.org/10.1103/PhysRevA.82.013821
12 12.Andalib P, Granpayeh N. All-optical ultracompact photonic crystal AND gate based on nonlinear ring resonators. Journal of the Optical Society of America B, Optical Physics, 2009, 26(1): 10–16
https://doi.org/10.1364/JOSAB.26.000010
13 Andalib P, Granpayeh N. All-optical ultra-compact photonic crystal NOR gate based on nonlinear ring resonators. Journal of Optics A, Pure and Applied Optics, 2009, 11(8): 085203
https://doi.org/10.1088/1464-4258/11/8/085203
14 Bai J, Wang J, Jiang J, Chen X, Li H, Qiu Y, Qiang Z. Photonic NOT and NOR gates based on a single compact photonic crystal ring resonator. Applied Optics, 2009, 48(36): 6923–6927
https://doi.org/10.1364/AO.48.006923 pmid: 20029593
15 Noshad M, Abbasi A, Ranjbar R, Kheradmand R. Novel all-optical logic gates based on photonic crystal structure. Journal of Physics: Conference Series, 2012, 350(1): 179–187
16 16.Gedney S D. Introduction to the finite-difference time-domain (FDTD) method for electromagnetics. Synthesis Lectures on Computational Electromagnetics, 2011, 6(1): 1–250
https://doi.org/10.2200/S00316ED1V01Y201012CEM027
17 17.Djavid M, Ghaffari A, Monifi F, Abrishamian M S. T-shaped channel-drop filters using photonic crystal ring resonators. Physica E, Low-Dimensional Systems and Nanostructures, 2008, 40(10): 3151–3154
https://doi.org/10.1016/j.physe.2008.05.002
18 18.Alipour-Banaei H, Mehdizadeh F, Hassangholizadeh-Kashtiban M. A new proposal for PCRR-based channel drop filter using elliptical rings. Physica E, Low-Dimensional Systems and Nanostructures, 2014, 56: 211–215
https://doi.org/10.1016/j.physe.2013.07.018
19 Pezeshki H, Ahmadi V.Nanoscale effects on multichannel add/drop filter based on 2-D photonic crystal ring-resonator heterostructure. Journal of Theoretical and Applied Physics, 2012, 6(1): 1–6
20 Djavid M, Monifi F, Ghaffari A, Abrishamian M. A new broadband L-shaped bend based on photonic crystal ring resonators. In: Progressing of Electromagnetics Research Symposium, Hangzhou, China, 2008, 1097–1099
21 Taalbi A, Bassou G, Youcef Mahmoud M.New design of channel drop filters based on photonic crystal ring resonators. Optik-International Journal for Light and Electron Optics, 2013, 124(9): 824–827
[1] Xin ZHANG, Jiawen JIAN, Han JIN, Peipeng XU. Nested microring resonator with a doubled free spectral range for sensing application[J]. Front. Optoelectron., 2017, 10(2): 144-150.
[2] Rui YANG,Linjie ZHOU,Minjuan WANG,Haike ZHU,Jianping CHEN. Application of SOI microring coupling modulation in microwave photonic phase shifters[J]. Front. Optoelectron., 2016, 9(3): 483-488.
[3] Meng XIONG,Yunhong DING,Haiyan OU,Christophe PEUCHERET,Xinliang ZHANG. Comparison of wavelength conversion efficiency between silicon waveguide and microring resonator[J]. Front. Optoelectron., 2016, 9(3): 390-394.
[4] Yunhong DING,Haiyan OU,Jing XU,Meng XIONG,Yi AN,Hao HU,Michael GALILI,Abel Lorences RIESGO,Jorge SEOANE,Kresten YVIND,Leif Katsuo OXENLØWE,Xinliang ZHANG,Dexiu HUANG,Christophe PEUCHERET. Linear all-optical signal processing using silicon micro-ring resonators[J]. Front. Optoelectron., 2016, 9(3): 362-376.
[5] Ning ZHANG,Kenan CICEK,Jiangbo ZHU,Shimao LI,Huanlu LI,Marc SOREL,Xinlun CAI,Siyuan YU. Manipulating optical vortices using integrated photonics[J]. Front. Optoelectron., 2016, 9(2): 194-205.
[6] Xiaoxiao XUE,Andrew M. WEINER. Microwave photonics connected with microresonator frequency combs[J]. Front. Optoelectron., 2016, 9(2): 238-248.
[7] Jing DAI,Minming ZHANG,Feiya ZHOU,Deming LIU. Highly efficient tunable optical filter based on liquid crystal micro-ring resonator with large free spectral range[J]. Front. Optoelectron., 2016, 9(1): 112-120.
[8] Somaye SERAJMOHAMMADI, Hamed ALIPOUR-BANAEI. Band gap properties of 2D square lattice photonic crystal composed of rectangular cells[J]. Front Optoelec, 2013, 6(3): 346-352.
[9] Hadi GHORBANPOUR, Somaye MAKOUEI. 2-channel all optical demultiplexer based on photonic crystal ring resonator[J]. Front Optoelec, 2013, 6(2): 224-227.
[10] Liyang LU, Jiayang WU, Tao WANG, Yikai SU. Compact all-optical differential-equation solver based on silicon microring resonator[J]. Front Optoelec, 2012, 5(1): 99-106.
[11] Lin GAN, Zhiyuan LI. Designs and experiments on infrared two-dimensional silicon photonic crystal slab devices[J]. Front Optoelec, 2012, 5(1): 21-40.
[12] Jinsong XIA, Takuya MARUIZUMI, Yasuhiro SHIRAKI. Ge quantum dots light-emitting devices[J]. Front Optoelec, 2012, 5(1): 13-20.
[13] Yingtao HU, Xi XIAO, Zhiyong LI, Yuntao LI, Yude YU, Jinzhong YU. Slow light in silicon microring resonators[J]. Front Optoelec Chin, 2011, 4(3): 282-287.
[14] Yikai SU, Gan ZHOU, Fei LI, Tao WANG. High-speed, compact silicon and hybrid plasmonic waveguides for signal processing[J]. Front Optoelec Chin, 2011, 4(3): 264-269.
[15] Yao CHEN, Junbo FENG, Zhiping ZHOU, Christopher J. SUMMERS, David S. CITRIN, Jun YU. Simple technique to fabricate microscale and nanoscale silicon waveguide devices[J]. Front Optoelec Chin, 2009, 2(3): 308-311.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed