Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2016, Vol. 9 Issue (3) : 362-376    https://doi.org/10.1007/s12200-016-0553-z
REVIEW ARTICLE
Linear all-optical signal processing using silicon micro-ring resonators
Yunhong DING1(),Haiyan OU1,Jing XU2,Meng XIONG1,Yi AN1,Hao HU1,Michael GALILI1,Abel Lorences RIESGO3(),Jorge SEOANE1,Kresten YVIND1,Leif Katsuo OXENLØWE1,Xinliang ZHANG2,Dexiu HUANG2(),Christophe PEUCHERET4()
1. Department of Photonics Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
2. Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
3. Department of Microtechnology and Nanoscience, Chalmers University of Technology, Gothenburg, Sweden
4. FOTON Laboratory, CNRS UMR 6082, University of Rennes 1, ENSSAT, 22300 Lannion, France
 Download: PDF(891 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Silicon micro-ring resonators (MRRs) are compact and versatile devices whose periodic frequency response can be exploited for a wide range of applications. In this paper, we review our recent work on linear all-optical signal processing applications using silicon MRRs as passive filters. We focus on applications such as modulation format conversion, differential phase-shift keying (DPSK) demodulation, modulation speed enhancement of directly modulated lasers (DMLs), and monocycle pulse generation. The possibility to implement polarization diversity circuits, which reduce the polarization dependence of standard silicon MRRs, is illustrated on the particular example of DPSK demodulation.

Keywords linear all-optical signal processing      micro-ring resonator (MRR)      polarization diversity      silicon-on-insulator (SOI)     
Corresponding Author(s): Yunhong DING,Abel Lorences RIESGO,Dexiu HUANG,Christophe PEUCHERET   
Just Accepted Date: 19 August 2016   Online First Date: 13 September 2016    Issue Date: 28 September 2016
 Cite this article:   
Yunhong DING,Haiyan OU,Jing XU, et al. Linear all-optical signal processing using silicon micro-ring resonators[J]. Front. Optoelectron., 2016, 9(3): 362-376.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-016-0553-z
https://academic.hep.com.cn/foe/EN/Y2016/V9/I3/362
Fig.1  Schematic of a standard add-drop micro-ring resonator
Fig.2  Fabrication process of a standard silicon micro-ring resonator (MRR). (a) E-beam resist spinning; (b) e-beam exposure; (c) developing; (d) ICP etching; (e) e-beam resist stripping; (f) scanning electron microscope (SEM) picture of a typical fabricated add/drop MRR
Fig.3  Experimental setup for multiple WDM channels RZ-OOK to NRZ-OOK format conversion
Fig.4  (a) WDM RZ signal spectrum and MRR through transmission; (b) converted WDM NRZ signal spectrum; measured eye-diagrams of (c) single RZ signal, (d) converted NRZ signals and (e) original reference NRZ signal; (f) BER measurements of the converted NRZ channels in single-channel and WDM operation, as well as an electrically generated reference NRZ signal
Fig.5  Experimental setup for simultaneous RZ-OOK to NRZ-OOK and RZ-DPSK to NRZ-DPSK format conversion
Fig.6  (a) MRR through transmission and spectra of the two-channel input RZ signals and the converted NRZ signals; measured eye-diagrams of (b) input RZ-OOK (single channel), (c) input RZ-DPSK (single channel), (d) demo-dulated signal of the input RZ-DPSK after balanced detection, (e) converted NRZ-OOK (two-channel), (f) converted NRZ-DPSK (two-channel) and (g) demodulated signal of the converted NRZ-DPSK after balanced detection
Fig.7  BER measurements for input RZ-OOK, converted NRZ-OOK, input RZ-DPSK, and converted NRZ-DPSK for both single and two-channel operations
Fig.8  Experimental setup for 640-Gbit/s RZ-to-NRZ format conversion
Fig.9  (a) Spectra of the original OTDM (blue), wavelength converted RZ (purple), and format converted NRZ signals (green), as well as through transmission of the silicon MRR (dashed black); (b)–(d) optical sampling oscilloscope traces of the original incoherent 640-Gbit/s OTDM signal, 640-Gbit/s wavelength converted RZ signal, and the 640-Gbit/s format converted NRZ signal, respectively; (e) BER results with PRBS length of 27–1 for channel 1 demultiplexed from 640-Gbit/s NRZ with 1 and 4 m DCFs, and a demultiplexed tributary from the 640-Gbit/s wavelength converted RZ signal with 1 m DCF
Fig.10  Experimental setup for MRR based WDM NRZ-DPSK demodulation
Fig.11  Measured transfer functions for the TM mode at the through and drop ports of the fabricated MRR, and measured spectra of the WDM NRZ-DPSK signals, as well as of the WDM AMI and DB signals demodulated in a single MRR
Fig.12  BER measurements for the multiple channel AMI and DB signals demodulated by the MRR, as well as a single channel AMI and DB signal demodulated by the MZDI. The insets show typical eye-diagrams for the AMI and DB signals demodulated by the MRR
Fig.13  Principle of using an MRR for modulation speed enhancement. The method is illustrated with simulated waveforms and eye-diagrams corresponding to a 10-Gbit/s DML driven with a 42.8-Gbit/s signal
Fig.14  (a) MRR through transmission and spectra of a 10-Gbit/s DML operated at 40 Gbit/s before and after the MRR. The insets show the eye diagrams measured directly at the DML output and after filtering by the MRR; (b) BER performance at the DML output (DML, B2B), after the MRR (DML+ MRR, B2B), as well as after different lengths of SSMF
Fig.15  (a) Principle of the UWB generation method; (b) calculated values of the MRR through and drop power coupling coefficients k12 and k22 resulting in monocycle pulses fulfilling the condition A1 = A2 for three electrical driving signal rise times of 50, 100 and 200 ps
Fig.16  Microscope picture of the fabricated coupling-tunable silicon MRR
Fig.17  Measured transfer functions at the through port of the MRR, together with the spectra of the optical NRZ-DPSK signals at 625 Mbit/s for generations of (a) negative and (c) positive polarity monocycle signals; waveform of the generated (b) negative and (d) positive polarity UWB monocycle pulse at 625 Mbit/s
Fig.18  Principle of a Pol-D circuit with a single MRR and two PSRs
Fig.19  (a) Microscope picture of a Pol-D circuit with a single MRR and two asymmetrical DC based PSRs. The inset shows an SEM image of the asymmetrical DC; (b) detailed transmission around the resonance wavelength of 1532.67 nm for TE, TM and 10 randomly chosen input polarization states
Fig.20  (a) SEM image of a fabricated Pol-D circuit. The inset shows an SEM image of the PSR based on a tapered waveguide followed by a 2 × 2 MMI; (b) measured transmission of the Pol-D MRR over a 60-nm wavelength range and (c) details of the transmission around the resonance wavelength of 1546.52 nm for 15 randomly chosen input polarization states
Fig.21  (a) BER measurements for the AMI signal demodulated by the Pol-D MRR with and without the polarization scrambler; eye-diagrams of the demo-dulated AMI signals (b) without and (c) with polarization scrambler, as well as (d) the signal demodulated by a standard MRR with polarization scrambling
1 Hirano M, Nakanishi T, Okuno T, Onishi M. Silica-based highly nonlinear fibers and their application. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(1): 103–113
https://doi.org/10.1109/JSTQE.2008.2010241
2 Oxenlowe L K, Ji H, Galili M, Pu M, Hu H, Mulvad H C H, Yvind K, Hvam J M, Clausen A T, Jeppesen P. Silicon photonics for signal processing of Tbit/s serial data signals. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18(2): 996–1005
https://doi.org/10.1109/JSTQE.2011.2140093
3 Pelusi M D, Ta’eed V G, Fu L, Magi E, Lamont M R E, Madden S, Choi D Y, Bulla D A P, Luther-Davies B, Eggleton B J. Applications of highly-nonlinear chalcogenide glass devices tailored for high-speed all-optical signal processing. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14(3): 529–539
https://doi.org/10.1109/JSTQE.2008.918669
4 Stubkjaer K E. Semiconductor optical amplifier-based all-optical gates for high-speed optical processing. IEEE Journal of Selected Topics in Quantum Electronics, 2000, 6(6): 1428–1435
https://doi.org/10.1109/2944.902198
5 Langrock C, Kumar S, McGeehan J E, Willner A E, Fejer M M. All-optical signal processing using χ(2) nonlinearities in guided-wave devices. Journal of Lightwave Technology, 2006, 24(7): 2579–2592
https://doi.org/10.1109/JLT.2006.874605
6 Bogaerts W, De Heyn P, Van Vaerenbergh T, De Vos K, Kumar Selvaraja S, Claes T, Dumon P, Bienstman P, Van Thourhout D, Baets R. Silicon microring resonators. Laser & Photonics Reviews, 2012, 6(1): 47–73
https://doi.org/10.1002/lpor.201100017
7 Marcatili E A J. Bends in optical dielectric waveguides. Bell System Technical Journal, 1969, 48(7): 2103–2132
https://doi.org/10.1002/j.1538-7305.1969.tb01167.x
8 Little B E, Chu S T, Haus H A, Foresi J, Laine J P. Microring resonator channel dropping filters. Journal of Lightwave Technology, 1997, 15(6): 998–1005
https://doi.org/10.1109/50.588673
9 Krauss T, Laybourn P J R, Roberts J. CW operation of semiconductor ring lasers. Electronics Letters, 1990, 26(25): 2095–2097
https://doi.org/10.1049/el:19901349
10 Xu Q, Schmidt B, Pradhan S, Lipson M. Micrometre-scale silicon electro-optic modulator. Nature, 2005, 435(7040): 325–327
https://doi.org/10.1038/nature03569 pmid: 15902253
11 Hill M T, Dorren H J S, De Vries T, Leijtens X J M, Den Besten J H, Smalbrugge B, Oei Y S, Binsma H, Khoe G D, Smit M K. A fast low-power optical memory based on coupled micro-ring lasers. Nature, 2004, 432(7014): 206–209
https://doi.org/10.1038/nature03045 pmid: 15538365
12 Ding Y, Zhang X B, Zhang X L, Huang D. Proposal for loadable and erasable optical memory unit based on dual active microring optical integrators. Optics Communications, 2008, 281(21): 5315–5321
https://doi.org/10.1016/j.optcom.2008.07.030
13 Ding Y, Zhang X, Zhang X, Huang D. Active microring optical integrator associated with electroabsorption modulators for high speed low light power loadable and erasable optical memory unit. Optics Express, 2009, 17(15): 12835–12848
https://doi.org/10.1364/OE.17.012835 pmid: 19654690
14 Ding Y, Pu M, Liu L, Xu J, Peucheret C, Zhang X, Huang D, Ou H. Bandwidth and wavelength-tunable optical bandpass filter based on silicon microring-MZI structure. Optics Express, 2011, 19(7): 6462–6470
https://doi.org/10.1364/OE.19.006462 pmid: 21451674
15 Yariv A. Universal relations for coupling of optical power between microresonators and dielectric waveguides. Electronics Letters, 2000, 36(4): 321–322
https://doi.org/10.1049/el:20000340
16 Amarnath K. Active microring and microdisk optical resonator on indium phosphide. Dissertation for the Doctoral degree. College Park: University of Maryland, 2006
17 Yu Y, Zhang X L, Huang D X, Li L J, Fu W. 20-Gb/s all-optical format conversions from RZ signals with different duty cycles to NRZ signals. IEEE Photonics Technology Letters, 2007, 19(14): 1027–1029
https://doi.org/10.1109/LPT.2007.898762
18 Zhang Y, Xu E, Huang D, Zhang X. All-optical format conversion from RZ to NRZ utilizing microfiber resonator. IEEE Photonics Technology Letters, 2009, 21(17): 1202–1204
https://doi.org/10.1109/LPT.2009.2024215
19 Ding Y, Peucheret C, Pu M, Zsigri B, Seoane J, Liu L, Xu J, Ou H, Zhang X, Huang D. Multi-channel WDM RZ-to-NRZ format conversion at 50 Gbit/s based on single silicon microring resonator. Optics Express, 2010, 18(20): 21121–21130
https://doi.org/10.1364/OE.18.021121 pmid: 20941008
20 Xiong M, Ozolins O, Ding Y, Huang B, An Y, Ou H, Peucheret C, Zhang X. Simultaneous RZ-OOK to NRZ-OOK and RZ-DPSK to NRZ-DPSK format conversion in a silicon microring resonator. Optics Express, 2012, 20(25): 27263–27272
https://doi.org/10.1364/OE.20.027263 pmid: 23262676
21 Hansen Mulvad H C, Oxenløwe L K, Galili M, Clausen A T, Grüner-Nielsen L, Jeppesen P. 1.28 Tbit/s single-polarisation serial OOK optical data generation and demultiplexing. Electronics Letters, 2009, 45(5): 280–281
https://doi.org/10.1049/el:20090206
22 Hayee M I, Willner A E. NRZ versus RZ in 10–40-Gb/s dispersion-managed WDM transmission systems. IEEE Photonics Technology Letters, 1999, 11(8): 991–993
https://doi.org/10.1109/68.775323
23 Ding Y, Hu H, Galili M, Xu J, Liu L, Pu M, Mulvad H C H, Oxenløwe L K, Peucheret C, Jeppesen P, Zhang X, Huang D, Ou H. Generation of a 640 Gbit/s NRZ OTDM signal using a silicon microring resonator. Optics Express, 2011, 19(7): 6471–6477
https://doi.org/10.1364/OE.19.006471 pmid: 21451675
24 Hansen Mulvad H C, Galili M, Oxenløwe L K, Hu H, Clausen A T, Jensen J B, Peucheret C, Jeppesen P. Demonstration of 5.1 Tbit/s data capacity on a single-wavelength channel. Optics Express, 2010, 18(2): 1438–1443
https://doi.org/10.1364/OE.18.001438 pmid: 20173971
25 Gnauck A H, Winzer P J. Optical phase-shift-keyed transmission. Journal of Lightwave Technology, 2005, 23(1): 115–130
https://doi.org/10.1109/JLT.2004.840357
26 Kaminow I P. Balanced optical discriminator. Applied Optics, 1964, 3(4): 507–510
https://doi.org/10.1364/AO.3.000507
27 Zhang L, Yang J Y, Song M, Li Y, Zhang B, Beausoleil R G, Willner A E. Microring-based modulation and demodulation of DPSK signal. Optics Express, 2007, 15(18): 11564–11569
https://doi.org/10.1364/OE.15.011564 pmid: 19547514
28 Xu L, Li C, Wong C, Tsang H K. Optical differential-phase shift- keying demodulation using a silicon microring resonator. IEEE Photonics Technology Letters, 2009, 21(5): 295–297
https://doi.org/10.1109/LPT.2008.2010873
29 Ding Y, Xu J, Peucheret C, Pu M, Liu L, Seoane J, Ou H, Zhang X, Huang D. Multi-channel 40 Gb/s NRZ-DPSK demodulation using a single silicon microring resonator. Journal of Lightwave Technology, 2011, 29(5): 677–684
https://doi.org/10.1109/JLT.2010.2101049
30 Matsui Y, Mahgerefteh D, Zheng X, Liao C, Fan Z F, McCallion K, Tayebati P. Chirp-managed directly modulated laser (CML). IEEE Photonics Technology Letters, 2006, 18(2): 385–387
https://doi.org/10.1109/LPT.2005.862358
31 An Y, Lorences Riesgo A, Seoane J, Ding Y, Ou H, Peucheret C. Transmission property of directly modulated signals enhanced by a micro-ring resonator. In: Proceedings of OptoElectronics and Communications Conference, OECC’2012. Busan, Korea, 2012, paper 6F3–3
32 An Y, Müller M, Estaran J, Spiga S, Da Ros F, Peucheret C, Amann M C. Signal quality enhancement of directly-modulated VCSELs using a micro-ring resonator transfer function. In: Proceedings of OptoElectronics and Communications Conference/Photonics in Switching, OECC/PS’2013. Kyoto, Japan, 2013, paper ThK3–3
33 Yao J, Zeng F, Wang Q. Photonic generation of ultrawideband signals. Journal of Lightwave Technology, 2007, 25(11): 3219–3235
https://doi.org/10.1109/JLT.2007.906820
34 Liu F, Wang T, Zhang Z, Qiu M, Su Y. On-chip photonic generation of ultrawideband monocycle pulses. Electronics Letters, 2009, 45(24): 1247–1249
https://doi.org/10.1049/el.2009.1529
35 Ding Y, Huang B, Peucheret C, Xu J, Ou H, Zhang X, Huang D. Ultra-wide band signal generation using a coupling-tunable silicon microring resonator. Optics Express, 2014, 22(5): 6078–6085
https://doi.org/10.1364/OE.22.006078 pmid: 24663942
36 Barwicz T, Watts M R, Popovic M, Rakich P T, Socci L, Kartner F X, Ippen E P, Smith H I. Polarization-transparent microphotonic devices in the strong confinement limit. Nature Photonics, 2007, 1(1): 57–60
https://doi.org/10.1038/nphoton.2006.41
37 Ding Y, Liu L, Peucheret C, Xu J, Ou H, Yvind K, Zhang X, Huang D. Towards polarization diversity on the SOI platform with simple fabrication process. IEEE Photonics Technology Letters, 2011, 23(23): 1808–1810
https://doi.org/10.1109/LPT.2011.2169776
38 Liu L, Ding Y, Yvind K, Hvam J M. Silicon-on-insulator polarization splitting and rotating device for polarization diversity circuits. Optics Express, 2011, 19(13): 12646–12651
https://doi.org/10.1364/OE.19.012646 pmid: 21716506
39 Zhang J, Yu M, Lo G Q, Kwong D L. Silicon-waveguide-based mode evolution polarization rotator. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16(1): 53–60
https://doi.org/10.1109/JSTQE.2009.2031424
40 Ding Y, Liu L, Peucheret C, Ou H. Fabrication tolerant polarization splitter and rotator based on a tapered directional coupler. Optics Express, 2012, 20(18): 20021–20027
https://doi.org/10.1364/OE.20.020021 pmid: 23037055
41 Ding Y, Ou H, Peucheret C. Wideband polarization splitter and rotator with large fabrication tolerance and simple fabrication process. Optics Letters, 2013, 38(8): 1227–1229
https://doi.org/10.1364/OL.38.001227 pmid: 23595439
42 Ding Y, Huang B, Ou H, Da Ros F, Peucheret C. Polarization diversity DPSK demodulator on the silicon-on-insulator platform with simple fabrication. Optics Express, 2013, 21(6): 7828–7834
https://doi.org/10.1364/OE.21.007828 pmid: 23546164
[1] Jianfeng GAO, Junqiang SUN, Heng ZHOU, Jialin JIANG, Yang ZHOU. Design and fabrication of compact Ge-on-SOI coupling structure[J]. Front. Optoelectron., 2019, 12(3): 276-285.
[2] G. PALAI, T. K. DHIR, B. NATH, S. L. PATRA. Modelling overall transmitted efficiency at 1550 nm for polymer grating Silicon-on-insulator structure with defect[J]. Front Optoelec, 2013, 6(2): 153-159.
[3] Liyang LU, Jiayang WU, Tao WANG, Yikai SU. Compact all-optical differential-equation solver based on silicon microring resonator[J]. Front Optoelec, 2012, 5(1): 99-106.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed