Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2016, Vol. 9 Issue (3) : 377-389    https://doi.org/10.1007/s12200-016-0554-y
TUTORIAL ARTICLE
Linear optical signal processing with optical filters: a tutorial
Xinliang ZHANG(),Zhao WU
Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(583 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

An effective theoretical analysis method is presented to analyze different linear optical signal processing functions with optical filters reported in literatures. For different applications, the optical filters are supposed to operate on the analog or digital part of the signal separately, namely analog spectrum conversion and digital spectrum conversion. For instance, the return-to-zero (RZ) to non-return-to-zero (NRZ) format conversion for intensity or phase modulated signals are based on the analog spectrum conversion process, while the (N)RZ to (N)RZ phase-shift-keying (PSK) format conversion, logic NOT gate and clock recovery for RZ signals are based on the digital spectrum conversion process. Theoretical analyses with the help of numerical simulation are used to verify the reported experimental results, and all the experimental results can be effectively analyzed with this analytical model. The effect of the transmission spectrum of the filter on the performance of the converted signal is investigated. The most important factor is that the theoretical analysis provides an effective way to optimize the optical filter for different optical signal processing functions.

Keywords linear optical signal processing      format conversion      optical filter      clock recovery      logic gate     
Corresponding Author(s): Xinliang ZHANG   
Just Accepted Date: 20 July 2016   Online First Date: 13 September 2016    Issue Date: 28 September 2016
 Cite this article:   
Xinliang ZHANG,Zhao WU. Linear optical signal processing with optical filters: a tutorial[J]. Front. Optoelectron., 2016, 9(3): 377-389.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-016-0554-y
https://academic.hep.com.cn/foe/EN/Y2016/V9/I3/377
Fig.1  (a) Spectrum, (b) analog spectrum and (c) digital spectrum of the 33% RZ signal
Fig.2  (a) Analog part and (b) analog spectra of the NRZ and RZ signal
Fig.3  Digital spectrum of the RZ signal
Fig.4  (a) Waveform of the RZ pulse; (b) spectrum of the RZ pulse and the transmission spectrum of DI; (c) waveform and (d) spectrum of the converted NRZ pulse
Fig.5  (a) Waveform of the RZ signal; (b) spectrum of the RZ signal and the transmission spectrum of DI; (c) analog spectrum of the RZ signal and the transmission spectrum of DI; (d) digital spectrum of the RZ signal; (e) waveform, (f) spectrum, (g) analog spectrum, and (h) digital spectrum of the converted NRZ signal
Fig.6  Waveform of the converted (a) DPSK and (b) QPSK signals
Fig.7  Two adjacent converted NRZ pulses with different phase transitions
Fig.8  Digital spectrum conversion for OOK to (a) PSK and (b) clock recovery
Fig.9  (a) Waveform of the RZ signal; (b) spectrum of the RZ signal and the transmission spectrum of the through port of MRR; (c) analog spectrum of RZ signal; (d) digital spectrum of RZ signal and the transmission spectrum of MRR; (e) waveform, (f) spectrum, (g) analog spectrum, and (h) digital spectrum of the converted RZ-PSK signal
Fig.10  (a) Waveform of the NRZ signal; (b) spectrum of the NRZ signal and the transmission spectrum of the through port of MRR; (c) waveform and (d) spectrum of the converted NRZ-PSK signal
Fig.11  (a) Waveform of the RZ signal; (b) spectrum of the RZ signal and the transmission spectrum of the drop port of MRR; (c) analog spectrum of the RZ signal; (d) digital spectrum of the RZ signal and the transmission spectrum of MRR; (e) waveform, (f) spectrum, (g) analog spectrum, and (h) digital spectrum of the recovered clock
Fig.12  (a) Spectrum of the 33% RZ signal and the through transmission spectrum of imperfect MRR; (b) constellation diagram of the converted RZ-PSK signal
Fig.13  (a) Spectrum of the 33% RZ signal and the drop transmission spectrum of imperfect MRR; (b) constellation diagram of the recovered clock
1 Ta’eed V G, Fu L, Pelusi M, Rochette M, Littler I C, Moss D J, Eggleton B J. Error free all optical wavelength conversion in highly nonlinear As-Se chalcogenide glass fiber. Optics Express, 2006, 14(22): 10371–10376
https://doi.org/10.1364/OE.14.010371 pmid: 19529435
2 Ta'eed V G, Shokooh-Saremi M, Fu L, Littler I C M, Moss D J, Rochette M, Eggleton B J, Yinlan Ruan B, Luther-DaviesB. Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(3): 360–370
https://doi.org/10.1109/JSTQE.2006.872727
3 Bogoni A, Wu X, Nuccio S R, Willner A E. 640 Gb/s all-optical regenerator based on a periodically poled lithium niobate waveguide. Journal of Lightwave Technology, 2012, 30(12): 1829–1834
https://doi.org/10.1109/JLT.2012.2189552
4 Yu Y, Zhang X, Rosas-Fernández J B, Huang D, Penty R V, White I H. Single SOA based 16 DWDM channels all-optical NRZ-to-RZ format conversions with different duty cycles. Optics Express, 2008, 16(20): 16166–16171
https://doi.org/10.1364/OE.16.016166 pmid: 18825254
5 Chen X B, Yu Y, Zhang X L. All-optical logic minterms for three-input demodulated differential phase-shift keying signals at 40 Gb/s. IEEE Photonics Technology Letters, 2011, 23(2): 118–120
https://doi.org/10.1109/LPT.2010.2091628
6 Wang F, Yu Y, Zhang Y, Zhang X. All-optical clock recovery using a single Fabry-Perot semiconductor optical amplifier. Journal of Lightwave Technology, 2012, 30(11): 1632–1637
https://doi.org/10.1109/JLT.2012.2187173
7 Luo T, Yu C, Pan Z, Wang Y, McGeehan J E, Adler M, Willner A E. All-optical chromatic dispersion monitoring of a 40-Gb/s RZ signal by measuring the XPM-generated optical tone power in a highly nonlinear fiber. IEEE Photonics Technology Letters, 2006, 18(2): 430–432
https://doi.org/10.1109/LPT.2005.862359
8 Li J, Olsson B E, Karlsson M, Andrekson P A. OTDM add-drop multiplexer based on XPM-induced wavelength shifting in highly nonlinear fiber. Journal of Lightwave Technology, 2005, 23(9): 2654–2661
https://doi.org/10.1109/JLT.2005.853158
9 Fok M P, Shu C. Multipump four-wave mixing in a photonic crystal fiber for 6 times 10 Gb/s wavelength multicasting of DPSK signals. IEEE Photonics Technology Letters, 2007, 19(15): 1166–1168
https://doi.org/10.1109/LPT.2007.901450
10 Ye T, Yan C, Lu Y, Liu F, Su Y. All-optical regenerative NRZ-to-RZ format conversion using coupled ring-resonator optical waveguide. Optics Express, 2008, 16(20): 15325–15331
https://doi.org/10.1364/OE.16.015325 pmid: 18825168
11 Lyubomirsky I, Chien C C, Wang Y H. Optical DQPSK receiver with enhanced dispersion tolerance. IEEE Photonics Technology Letters, 2008, 20(7): 511–513
https://doi.org/10.1109/LPT.2008.918216
12 Zhang L, Yang J Y, Li Y, Song M, Beausoleil R G, Willner A E. Monolithic modulator and demodulator of differential quadrature phase-shift keying signals based on silicon microrings. Optics Letters, 2008, 33(13): 1428–1430
https://doi.org/10.1364/OL.33.001428 pmid: 18594654
13 Maram R, Ming L, Azana J. High-speed all-optical NOT gate based on spectral phase-only linear optical filtering. In: Proceedings of IEEE Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC), 2013, 1–3
14 Maram R, Kong D, Galili M, Oxenløwe L K, Azaña J. Ultrafast all-optical clock recovery based on phase-only linear optical filtering. Optics Letters, 2014, 39(9): 2815–2818
https://doi.org/10.1364/OL.39.002815 pmid: 24784111
15 Ashrafi R, Azaña J. Figure of merit for photonic differentiators. Optics Express, 2012, 20(3): 2626–2639
https://doi.org/10.1364/OE.20.002626 pmid: 22330500
16 Ferrera M, Park Y, Razzari L, Little B E, Chu S, Morandotti R, Moss JD J, Azaña. Ultra-fast integrated all-optical integrator. In: Proceedings of Conference on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS), 2010, 1–2
17 Ferrera M, Park Y, Razzari L, Little B E, Chu S T, Morandotti R, Moss D J, Azaña J. All-optical 1st and 2nd order integration on a chip. Optics Express, 2011, 19(23): 23153–23161
https://doi.org/10.1364/OE.19.023153 pmid: 22109195
18 Ngo N Q, Song Y. On the interrelations between an optical differentiator and an optical Hilbert transformer. Optics Letters, 2011, 36(6): 915–917
https://doi.org/10.1364/OL.36.000915 pmid: 21403727
19 Asghari M H, Azaña J. All-optical Hilbert transformer based on a single phase-shifted fiber Bragg grating: design and analysis. Optics Letters, 2009, 34(3): 334–336
https://doi.org/10.1364/OL.34.000334 pmid: 19183649
20 Yu Y, Zhang X L, Huang D X. All-optical RZ-to-NRZ format conversion with a tunable fibre based delay interferometer. Chinese Physics Letters, 2007, 24(3): 706–709
https://doi.org/10.1088/0256-307X/24/3/032
21 Yu Y, Zhang X L, Huang D X, Li L J, Fu W. 20-Gb/s all-optical format conversions from RZ signals with different duty cycles to NRZ signals. IEEE Photonics Technology Letters, 2007, 19(14): 1027–1029 doi:10.1109/LPT.2007.898762
22 Yu Y, Zhang X, Huang D. All-optical format conversion from CS-RZ to NRZ at 40 Gbit/s. Optics Express, 2007, 15(9): 5693–5698
https://doi.org/10.1364/OE.15.005693 pmid: 19532827
23 Zhang Y, Xu E, Huang D, Zhang X. All-optical format conversion from RZ to NRZ utilizing microfiber resonator. IEEE Photonics Technology Letters, 2009, 21(17): 1202–1204
https://doi.org/10.1109/LPT.2009.2024215
24 Ding Y, Peucheret C, Pu M, Zsigri B, Seoane J, Liu L, Xu J, Ou H, Zhang X, Huang D. Multi-channel WDM RZ-to-NRZ format conversion at 50 Gbit/s based on single silicon microring resonator. Optics Express, 2010, 18(20): 21121–21130
https://doi.org/10.1364/OE.18.021121 pmid: 20941008
25 Ding Y, Xu J, Peucheret C, Pu M, Liu L, Seoane J, Ou H, Zhang X, Huang D. Multi-channel 40 Gbit/s NRZ-DPSK demodulation using a single silicon microring resonator. Journal of Lightwave Technology, 2011, 29(5): 677–684
https://doi.org/10.1109/JLT.2010.2101049
26 Ding Y, Hu H, Galili M, Xu J, Liu L, Pu M, Mulvad H C, Oxenløwe L K, Peucheret C, Jeppesen P, Zhang X, Huang D, Ou H. Generation of a 640 Gbit/s NRZ OTDM signal using a silicon microring resonator. Optics Express, 2011, 19(7): 6471–6477
https://doi.org/10.1364/OE.19.006471 pmid: 21451675
27 Zhang Z, Yu Y, Zhang X. Simultaneous all-optical demodulation and format conversion for multi-channel (CS)RZ-DPSK signals. Optics Express, 2011, 19(13): 12427–12433
https://doi.org/10.1364/OE.19.012427 pmid: 21716481
28 Xiong M, Ding Y, Zhang Q, Zhang X. All-optical clock recovery from 40 Gbit/s RZ signal based on microring resonators. Applied Optics, 2011, 50(28): 5390–5396
https://doi.org/10.1364/AO.50.005390 pmid: 22016205
29 Yu Y, Zhang X L, Huang D X. Simultaneous all-optical multi-channel RZ and CSRZ to NRZ format conversion. Optics Communications, 2011, 284(1): 129–135
https://doi.org/10.1016/j.optcom.2010.09.017
30 Xiong M, Ozolins O, Ding Y, Huang B, An Y, Ou H, Peucheret C, Zhang X. Simultaneous RZ-OOK to NRZ-OOK and RZ-DPSK to NRZ-DPSK format conversion in a silicon microring resonator. Optics Express, 2012, 20(25): 27263–27272
https://doi.org/10.1364/OE.20.027263 pmid: 23262676
31 Wu W, Yu Y, Hu S, Zou B, Zhang X. All-optical format conversion for polarization and wavelength division multiplexed system. IEEE Photonics Technology Letters, 2012, 24(18): 1606–1609
https://doi.org/10.1109/LPT.2012.2210543
32 Zou B, Yu Y, Huang X, Wu Z, Wu W, Zhang X. All-optical format conversion for multichannel QPSK signals. Journal of Lightwave Technology, 2013, 31(3): 375–384
https://doi.org/10.1109/JLT.2012.2230614
33 Xiang L, Gao D, Zou B, Hu S, Zhang X. Simultaneous multi-channel RZ-OOK/DPSK to NRZ-OOK/DPSK format conversion based on integrated delay interferometers and arrayed-waveguide grating. Science China-Technological Sciences, 2013, 56(3): 558–562
https://doi.org/10.1007/s11431-012-5124-y
34 Qin Y, Yu Y, Zou J, Ye M, Xiang L, Zhang X. Silicon based polarization insensitive filter for WDM-PDM signal processing. Optics Express, 2013, 21(22): 25727–25733
https://doi.org/10.1364/OE.21.025727 pmid: 24216798
35 Xiang L, Yu Y, Qin Y, Zou J, Zou B, Zhang X. SOI based ultracompact polarization insensitive filter for PDM signal processing. Optics Letters, 2013, 38(14): 2379–2381
https://doi.org/10.1364/OL.38.002379 pmid: 23939054
36 Zou J, Yu Y, Yang W, Wu Z, Ye M, Chen G, Liu L, Deng S, Zhang X. An SOI based polarization insensitive filter for all-optical clock recovery. Optics Express, 2014, 22(6): 6647–6652
https://doi.org/10.1364/OE.22.006647 pmid: 24664013
37 Winzer P J, Essiambre R J. Advanced optical modulation formats. Proceedings of the IEEE, 2006, 94(5): 952–985
https://doi.org/10.1109/JPROC.2006.873438
38 Vaseghi S V. Advanced Signal Processing and Digital Noise Reduction. New York: Wiley, 1996
39 Maram R, Kong D, Galili M, Oxenlowe L K, Azana J. 640 Gbit/s RZ-to-NRZ format conversion based on optical phase filtering. In: Proceedings of IEEE Photonics Conference (IPC), 2014, 316–317
40 Ye T, Lu Y, Liu F, Zhang Q, Zhang Z, Qiu M, Su Y. 160-Gb/s NRZ-to-PSK conversion using linear filtering in silicon ring resonators. In: Proceedings of Lasers and Electro-Optics 2008 and 2008 Conference on Quantum Electronics and Laser Science (CLEO/QELS), 2008, JWA94
41 Heebner J, Grover R, Ibrahim T. Optical Microresonators: Theory, Fabrication, and Applications. Berlin: Springer, 2007
[1] John C. CARTLEDGE. Performance of coherent optical fiber transmission systems[J]. Front. Optoelectron., 2018, 11(2): 128-133.
[2] Ashkan PASHAMEHR,Mahdi ZAVVARI,Hamed ALIPOUR-BANAEI. All-optical AND/OR/NOT logic gates based on photonic crystal ring resonators[J]. Front. Optoelectron., 2016, 9(4): 578-584.
[3] M. Venkata SUDHAKAR,Y. Mallikarjuna REDDY,B. Prabhakara RAO. Influence of optical filtering on transmission capacity in single mode fiber communications[J]. Front. Optoelectron., 2015, 8(4): 424-430.
[4] Xiang ZHOU. Enabling technologies and challenges for transmission of 400 Gb/s signals in 50 GHz channel grid[J]. Front Optoelec, 2013, 6(1): 30-45.
[5] Li HUO, Qiang WANG, Yanfei XING, Caiyun LOU. Signal generation and processing at 100 Gb/s based on optical time division multiplexing[J]. Front Optoelec, 2013, 6(1): 57-66.
[6] Bingrong ZOU, Yu YU, Wenhan WU, Shoujin HU, Zheng ZHANG, Xinliang ZHANG. All-optical format conversion from RZ-QPSK to NRZ-QPSK[J]. Front Optoelec, 2012, 5(3): 330-333.
[7] Hamidine MAHAMADOU, Xiuhua YUAN, Eljack M. SARAH, Weizheng ZOU. Simulation and comprehensive assessment of single channel RZ-DPSK optical link by dispersion management with channel bit rate beyond 40 Gbits/s[J]. Front Optoelec, 2012, 5(3): 322-329.
[8] Yin ZHANG, Jianji DONG, Lei LEI, Hao HE, Xinliang ZHANG. 40-Gbit/s 3-input all-optical priority encoder based on cross-gain modulation in two parallel semiconductor optical amplifiers[J]. Front Optoelec, 2012, 5(2): 195-199.
[9] Zheng ZHANG, Yu YU, Xinliang ZHANG. Simulation for all-optical format conversion from NRZ-DPSK to RZ-DPSK[J]. Front Optoelec Chin, 2011, 4(3): 320-324.
[10] Shangjian ZHANG, Lei XU, Yong LIU, Yongzhi LIU. In-band clock distribution concept for ultra-high bit rates OTDM system[J]. Front Optoelec Chin, 2010, 3(4): 343-346.
[11] Taorong GONG, Fengping YAN, Dan LU, Ming CHEN, Peng LIU, Peilin TAO, Muguang WANG, Tangjun LI, Shuisheng JIAN. 160-Gbit/s clock recovery using an electro-absorption modulator and 40-Gbit/s ETDM demultiplexer[J]. Front Optoelec Chin, 2009, 2(4): 389-392.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed