Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2016, Vol. 9 Issue (3) : 450-465    https://doi.org/10.1007/s12200-016-0557-8
REVIEW ARTICLE
Asymmetric directional couplers based on silicon nanophotonic waveguides and applications
Daoxin DAI(),Shipeng WANG
State Key Laboratory for Modern Optical Instrumentation, Centre for Optical and Electromagnetic Research, Zhejiang Provincial Key Laboratory for Sensing Technologies, Zhejiang University, Hangzhou 310058, China
 Download: PDF(972 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Directional couplers (DCs) have been playing an important role as a basic element for realizing power exchange. Previously most work was focused on symmetric DCs and little work was reported for asymmetric directional couplers (ADCs). In recently years, silicon nanophotonic waveguides with ultra-high index contrast and ultra-small cross section have been developed very well and it has been shown that ADCs based on silicon-on-insulator (SOI) nanophotonic waveguides have some unique ability for polarization-selective coupling as well as mode-selective coupling, which are respectively very important for polarization-related systems and mode-division-mulitplexing systems. In this paper, a review is given for the recent progresses on silicon-based ADCs and the applications for power splitting, polarization beam splitting, as well as mode conversion/(de)multiplexing.

Keywords silicon photonics      asymmetric directional couplers (ADCs)      polarization-division multiplexing (PDM)      mode-division multiplexing (MDM)      polarization beam splitter (PBSs)     
Corresponding Author(s): Daoxin DAI   
Online First Date: 13 September 2016    Issue Date: 28 September 2016
 Cite this article:   
Daoxin DAI,Shipeng WANG. Asymmetric directional couplers based on silicon nanophotonic waveguides and applications[J]. Front. Optoelectron., 2016, 9(3): 450-465.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-016-0557-8
https://academic.hep.com.cn/foe/EN/Y2016/V9/I3/450
Fig.1  (a) SEM image of the present five-microring filter with bent couplers; (b) SEM image of the bent coupler used here [59]
Fig.2  (a) Simulated power coupling ratio of the bent coupler as the angle q of the coupling region increases when w1=0.35 mm, R1=5.455 mm, w2=0.425 mm, and R2=4.886 mm; (b) coupling ratio of the inter-ring coupler as the gap width wgap varies when choosing R2=4.886 mm and w2=0.425 mm [59]
Fig.3  Measured (thin curves) and simulated (thick curves) responses of the optical filters with (a) three microrings and (b) five microrings. The insets are the SEM images of the filers [59]
Fig.4  (a) Schematic configuration of the PBS based on an ADC with three optical waveguides; (b) effective indices of the guided-modes in a SOI nanowire with hco=220 nm. The simulated light propagation when the light is launched into the PBS (c) for TE polarization and (d) for TM polarization, respectively. The calculated wavelength dependence of the designed PBS when the input is (e) the TM0 mode, and (f) the TE0 mode. The parameters are: hco=220 nm, w1=410 nm, w2=1.195 mm, wg=300 nm, Lc1=11.3 mm, Lc2=12.7 mm, and L0= –3 mm [39]
Fig.5  An bent ADC consisting of two bent waveguides with different core widths [40]
Fig.6  Optical path lengths (OPL) as the waveguide width varies when R2=20 mm: (a) TM, (b) TE; light propagation in the designed bent coupler with R1=19.3 mm, R2=20.0 mm, w1=0.534 mm, w2=0.46 mm, and wg=203 nm: (c) TM, (d) TE. The SOI wafer has a silicon thickness of hco=220 nm, and the refractive indices of Si, SiO2, and air are assumed to be nSi=3.455, nSiO2=1.445, and nair=1.0 respectively [40]
Fig.7  An ultra-short PBS based on a bent ADC. (a) Schematic configuration; (b) SEM picture. The light propagation in the designed PBS with Ldc=4.5 mm, R1=19.3 mm, R2=20.0 mm, w1=0.534 mm, w2=0.46 mm, and wg=203 nm: (c) TM, (d) TE. The wavelength dependence of the PBSs: (e) TM, (f) TE [40]
Fig.8  PBS based on an ADC consisting of a SOI nanowire and a nano-slot waveguide: (a) SEM picture; (b) cross section; (c) calcualted effective indices of a SOI nanowire and a nano-slot waveguide as the core width (wSi, wco) varies; (d) light propagation in the designed PBS with wco=0.4 mm, wSi=0.26 mm, hco=250 nm, wslot=60 nm, and wg=100 nm [43]
Fig.9  (a) Cross section of a silicon hybrid plasmonic waveguide with field enhancement in the low index region [49]; (b) schematic configuration of an ADC with a hybrid nanoplasmonic waveguide [47]; (c) cross section of the coupling region of the ADC; (d) 3D-FDTD simulation result for the light propagation in the designed PBS when the input is TE or TM respectively
Fig.10  (a) Calculated effective indices of the guided-modes in an SOI strip nanowire with hco=220 nm; the FDTD simulated light propagation in the designed ith stage ADC with (b) i=1, (c) i=2, and (d) i=3; (e) schematic configuration of the mode converter-multiplexer with 4 channels [86]
Fig.11  (a) SEM picture for the 4×1 mode multiplexer and 1×4 mode demultiplexer integrated on the same chip; measured responses at output ports (O1, O2, O3, and O4) when light is input from the port of (b) I1, (c) I2, (d) I3, and (e) I4 [86]
Fig.12  (a) 8-channel hybrid multiplexer enabling mode- and polarization-division-(de)multiplexing simultaneously; (b) the fabricated 8-channel hybrid multiplexer [91]
Fig.13  A 18-channel PDM-WDM hybrid (de)multiplexer (a) and the measurement responses of all the channels (b)
Fig.14  A 64-channel MDM-WDM hybrid multiplexer (a) and the measurement results (b) [94]
1 Fukuda H, Yamada K, Tsuchizawa T, Watanabe T, Shinojima H, Itabashi S. Ultrasmall polarization splitter based on silicon wire waveguides. Optics Express, 2006, 14(25): 12401–12408
https://doi.org/10.1364/OE.14.012401 pmid: 19529672
2 Shi Y, Anand S, He S. Design of a polarization insensitive triplexer using directional couplers based on submicron silicon Rib waveguides. Journal of Lightwave Technology, 2009, 27(11): 1443–1447
https://doi.org/10.1109/JLT.2008.2010465
3 Okamoto K. Fundamentals of Optical Waveguides.New York: Academic Press, 2010
4 Haus H A, Huang W P, Kawakami S, Whitaker N. Coupled-mode theory of optical waveguides. Journal of Lightwave Technology, 1987, 5(1): 16–23
https://doi.org/10.1109/JLT.1987.1075416
5 Wagner R E, Cheng J. Electrically controlled optical switch for multimode fiber applications. Applied Optics, 1980, 19(17): 2921–2925
https://doi.org/10.1364/AO.19.002921 pmid: 20234527
6 Schmidt R V, Alferness R C. Directional coupler switches, modulators, and filters using alternating Db techniques. IEEE Transactions on Circuits and Systems, 1979, 26(12): 1099–1108
https://doi.org/10.1109/TCS.1979.1084592
7 Kogelnik H, Schmidt R V. Switched directional couplers with alternating Db. IEEE Journal of Quantum Electronics, 1976, 12(7): 396–401
https://doi.org/10.1109/JQE.1976.1069190
8 Paniccia M J. A perfect marriage: optics and silicon. Optik & Photonik, 2011, 6(2): 34–38
9 Bogaerts W, Selvaraja S K, Dumon P, Brouckaert J, De Vos K, Van Thourhout D, Baets R. Silicon-on-insulator spectral filters fabricated with CMOS technology. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16(1): 33–44
https://doi.org/10.1109/JSTQE.2009.2039680
10 Bogaerts W, Dumon P, Van Thourhout D, Taillaert D, Jaenen P, Wouters J, Beckx S, Wiaux V, Baets R. Compact wavelength-selective functions in silicon-on-insulator photonic wires. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(6): 1394–1401
https://doi.org/10.1109/JSTQE.2006.884088
11 Sasaki K, Ohno F, Motegi A, Baba T. Arrayed waveguide grating of 70× 60 µm2 size based on Si photonic wire waveguides. Electronics Letters, 2005, 41(14): 801–802
https://doi.org/10.1049/el:20051541
12 Bogaerts W, Dumon P, Van Thourhout D, Taillaert D, Jaenen P, Wouter J, Beckx S, Wiaux V, Baets R G. Compact wavelength-selective functions in silicon-on-insulator photonic wires. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(6): 1394–1401
https://doi.org/10.1109/JSTQE.2006.884088
13 Soltani M, Yegnanarayanan S, Adibi A. Ultra-high Q planar silicon microdisk resonators for chip-scale silicon photonics. Optics Express, 2007, 15(8): 4694–4704
https://doi.org/10.1364/OE.15.004694 pmid: 19532715
14 Li C, Zhou L, Poon A W. Silicon microring carrier-injection-based modulators/switches with tunable extinction ratios and OR-logic switching by using waveguide cross-coupling. Optics Express, 2007, 15(8): 5069–5076
https://doi.org/10.1364/OE.15.005069 pmid: 19532756
15 Rong H, Jones R, Liu A, Cohen O, Hak D, Fang A, Paniccia M. A continuous-wave Raman silicon laser. Nature, 2005, 433(7027): 725–728
https://doi.org/10.1038/nature03346 pmid: 15716948
16 Xu Q, Schmidt B, Pradhan S, Lipson M. Micrometre-scale silicon electro-optic modulator. Nature, 2005, 435(7040): 325–327
https://doi.org/10.1038/nature03569 pmid: 15902253
17 Barrios C A, Almeida V R, Panepucci R, Lipson M. Electrooptic modulation of silicon-on-insulator submicrometer-size waveguide devices. Journal of Lightwave Technology, 2003, 21(10): 2332–2339
https://doi.org/10.1109/JLT.2003.818167
18 Tang Y, Chen H W, Jain S, Peters J D, Westergren U, Bowers J E. 50 Gb/s hybrid silicon traveling-wave electroabsorption modulator. Optics Express, 2011, 19(7): 5811–5816
https://doi.org/10.1364/OE.19.005811 pmid: 21451605
19 Dai D, Liu L, Wosinski L, He S. Design and fabrication of ultra-small overlapped AWG demultiplexer based on α-SOI nanowire waveguides. Electronics Letters, 2006, 42(7): 400–402
https://doi.org/10.1049/el:20060157
20 Fukuda H, Yamada K, Tsuchizawa T, Watanabe T, Shinojima H, Itabashi S. Silicon photonic circuit with polarization diversity. Optics Express, 2008, 16(7): 4872–4880
https://doi.org/10.1364/OE.16.004872 pmid: 18542586
21 Vermeulen D, Van Acoleyen K, Ghosh S, Selvaraja S, De Cort W, Yebo N, Hallynck E, De Vos K, Debackere P, Dumon P, Bogaerts W, Roelkens G, Van Thourhout D, Baets R. Efficient tapering to the fundamental quasi-TM mode in asymmetrical waveguides. In: Proceedings of European Conference on Integrated Optics (ECIO), United Kingdom, 2010. Paper Wep16
22 Dai D, Bowers J E. Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires. Optics Express, 2011, 19(11): 10940–10949
https://doi.org/10.1364/OE.19.010940 pmid: 21643354
23 Dai D, Bauters J, Bowers J E. Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction. Light, Science & Applications, 2012, 1(3): e1
https://doi.org/10.1038/lsa.2012.1
24 Dai D, Liu L, Gao S, Xu D, He S. Polarization management for silicon photonic integrated circuits. Laser & Photonics Reviews, 2013, 7(3): 303–328
https://doi.org/10.1002/lpor.201200023
25 Augustin L M, Van der Tol J J G M, Hanfoug R, de Laat W J M, Van de Moosdijk M J E, Van Dijk P W L, Oei Y, Smit M K. A single etch-step fabrication-tolerant polarization splitter. Journal of Lightwave Technology, 2007, 25(3): 740–746
https://doi.org/10.1109/JLT.2006.890430
26 Liang T K, Tsang H K. Integrated polarization beam splitter in high index contrast silicon-on-insulator waveguides. IEEE Photonics Technology Letters, 2005, 17(2): 393–395
https://doi.org/10.1109/LPT.2004.839462
27 Augustin L M, Hanfoug R, Van der Tol J, de Laat W J M, Smit M K. A compact integrated polarization splitter/converter in InGaAsP-InP. IEEE Photonics Technology Letters, 2007, 19(17): 1286–1288
https://doi.org/10.1109/LPT.2007.902277
28 Hong J M, Ryu H H, Park S R, Jeong J W, Gol L S, Lee E H, Park S G, Woo D, Kim S O B H. Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application. IEEE Photonics Technology Letters, 2003, 15(1): 72–74
https://doi.org/10.1109/LPT.2002.805803
29 Jiao Y, Dai D, Shi Y, He S. Shortened polarization beam splitters with two cascaded multimode interference sections. IEEE Photonics Technology Letters, 2009, 21(20): 1538–1540
https://doi.org/10.1109/LPT.2009.2029349
30 Tu Z, Huang Y W, Yi H X, Wang X J, Li Y P, Li L, Hu W W.A compact SOI polarization beam splitter based on multimode interference coupler. Proceedings of SPIE-The International Society for Optical Engineering, 2011, 8307(1):1–6
31 Yang B K, Shin S Y, Zhang D. Ultrashort polarization splitter using two-mode interference in silicon photonic wires. IEEE Photonics Technology Letters, 2009, 21(7): 432–434
https://doi.org/10.1109/LPT.2009.2013638
32 Kiyat I, Aydinli A, Dagli N. A compact silicon-on-insulator polarization splitter. IEEE Photonics Technology Letters, 2005, 17(1): 100–102
https://doi.org/10.1109/LPT.2004.838133
33 Xiao J, Liu X, Sun X. Design of a compact polarization splitter in horizontal multiple-slotted waveguide structures. Japanese Journal of Applied Physics, 2008, 47(5R): 3748–3754
34 Tu X, Ang S S N, Chew A B, Teng J, Mei T. An ultracompact directional coupler based on gaas cross-slot waveguide. IEEE Photonics Technology Letters, 2010, 22(17): 1324–1326
https://doi.org/10.1109/LPT.2010.2055234
35 Yamazaki T, Aono H, Yamauchi J, Nakano H. Coupled waveguide polarization splitter with slightly different core widths. Journal of Lightwave Technology, 2008, 26(21): 3528–3533
https://doi.org/10.1109/JLT.2008.917322
36 Yue Y, Zhang L, Yang J Y, Beausoleil R G, Willner A E. Silicon-on-insulator polarization splitter using two horizontally slotted waveguides. Optics Letters, 2010, 35(9): 1364–1366
https://doi.org/10.1364/OL.35.001364 pmid: 20436570
37 Shi Y, Dai D, He S. Proposal for an ultracompact polarization-beam splitter based on a photonic-crystal-assisted multimode interference coupler. IEEE Photonics Technology Letters, 2007, 19(11): 825–827
https://doi.org/10.1109/LPT.2007.897297
38 Ao X, Liu L, Wosinski L, He S. Polarization beam splitter based on a two-dimensional photonic crystal of pillar type. Applied Physics Letters, 2006, 89(17): 171115
https://doi.org/10.1063/1.2360201
39 Dai D. Silicon polarization beam splitter based on an asymmetrical evanescent coupling system with three optical waveguides. Journal of Lightwave Technology, 2012, 30(20): 3281–3287
https://doi.org/10.1109/JLT.2012.2218217
40 Dai D, Bowers J E. Novel ultra-short and ultra-broadband polarization beam splitter based on a bent directional coupler. Optics Express, 2011, 19(19): 18614–18620
https://doi.org/10.1364/OE.19.018614 pmid: 21935230
41 Wang J, Liang D, Tang Y, Dai D, Bowers J E. Realization of an ultra-short silicon polarization beam splitter with an asymmetrical bent directional coupler. Optics Letters, 2013, 38(1): 4–6
https://doi.org/10.1364/OL.38.000004 pmid: 23282819
42 Komatsu M A, Saitoh K, Koshiba M. Design of miniaturized silicon wire and slot waveguide polarization splitter based on a resonant tunneling. Optics Express, 2009, 17(21): 19225–19233
https://doi.org/10.1364/OE.17.019225 pmid: 20372659
43 Dai D, Wang Z, Bowers J E. Ultrashort broadband polarization beam splitter based on an asymmetrical directional coupler. Optics Letters, 2011, 36(13): 2590–2592
https://doi.org/10.1364/OL.36.002590 pmid: 21725489
44 Lin S, Hu J, Crozier K B. Ultracompact, broadband slot waveguide polarization splitter. Applied Physics Letters, 2011, 98(15): 151101
https://doi.org/10.1063/1.3579243
45 Lou F, Dai D, Wosinski L. Ultracompact polarization beam splitter based on a dielectric-hybrid plasmonic-dielectric coupler. Optics Letters, 2012, 37(16): 3372–3374
https://doi.org/10.1364/OL.37.003372 pmid: 23381261
46 Chee J, Zhu S, Lo G Q. CMOS compatible polarization splitter using hybrid plasmonic waveguide. Optics Express, 2012, 20(23): 25345–25355
https://doi.org/10.1364/OE.20.025345 pmid: 23187351
47 Guan X, Wu H, Shi Y, Wosinski L, Dai D. Ultracompact and broadband polarization beam splitter utilizing the evanescent coupling between a hybrid plasmonic waveguide and a silicon nanowire. Optics Letters, 2013, 38(16): 3005–3008
https://doi.org/10.1364/OL.38.003005 pmid: 24104633
48 Almeida V R, Xu Q, Barrios C A, Lipson M. Guiding and confining light in void nanostructure. Optics Letters, 2004, 29(11): 1209–1211
https://doi.org/10.1364/OL.29.001209 pmid: 15209249
49 Dai D, He S. A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement. Optics Express, 2009, 17(19): 16646–16653
https://doi.org/10.1364/OE.17.016646 pmid: 19770880
50 Song Y, Wang J, Li Q, Yan M, Qiu M. Broadband coupler between silicon waveguide and hybrid plasmonic waveguide. Optics Express, 2010, 18(12): 13173–13179
https://doi.org/10.1364/OE.18.013173 pmid: 20588445
51 Dai D. Silicon mode-(de) multiplexer for a hybrid multiplexing system to achieve ultrahigh capacity photonic networks-on-chip with a single-wavelength-carrier light. In: Proceedings of Communications And Photonics Conference (ACP), IEEE, 2012, 1–3
52 Little B E, Chu S T, Absil P P, Hryniewicz J V, Johnson F G, Seiferth F, Gill D, Van V, King O, Trakalo M. Very high-order microring resonator filters for WDM applications. IEEE Photonics Technology Letters, 2004, 16(10): 2263–2265
https://doi.org/10.1109/LPT.2004.834525
53 Luo X, Song J, Feng S, Poon A W, Liow T Y, Yu M, Lo G Q, Kwong D L. Silicon high-order coupled-microring-based electro-optical switches for on-chip optical interconnects. IEEE Photonics Technology Letters, 2012, 24(10): 821–823
https://doi.org/10.1109/LPT.2012.2188829
54 Tobing L Y M, Dumon P, Baets R, Chin M K. Boxlike filter response based on complementary photonic bandgaps in two-dimensional microresonator arrays. Optics Letters, 2008, 33(21): 2512–2514
https://doi.org/10.1364/OL.33.002512 pmid: 18978904
55 Melloni A. Synthesis of a parallel-coupled ring-resonator filter. Optics Letters, 2001, 26(12): 917–919
https://doi.org/10.1364/OL.26.000917 pmid: 18040491
56 Little B E, Chu S T, Haus H A, Foresi J, Laine J P. Microring resonator channel dropping filters. Journal of Lightwave Technology, 1997, 15(6): 998–1005
57 Xia F, Rooks M, Sekaric L, Vlasov Y. Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects. Optics Express, 2007, 15(19): 11934–11941
https://doi.org/10.1364/OE.15.011934 pmid: 19547556
58 Bachmann M, Besse P A, Melchior H. General self-imaging properties in N × N multimode interference couplers including phase relations. Applied Optics, 1994, 33(18): 3905–3911
https://doi.org/10.1364/AO.33.003905 pmid: 20935735
59 Chen P, Chen S, Guan X, Shi Y, Dai D. High-order microring resonators with bent couplers for a box-like filter response. Optics Letters, 2014, 39(21): 6304–6307
https://doi.org/10.1364/OL.39.006304 pmid: 25361340
60 Morino H, Maruyama T, Iiyama K. Reduction of wavelength dependence of coupling characteristics using si optical waveguide curved directional coupler. Journal of Lightwave Technology, 2014, 32(12): 2188–2192
https://doi.org/10.1109/JLT.2014.2321660
61 Xia F, Sekaric L, Vlasov Y A. Mode conversion losses in silicon-on-insulator photonic wire based racetrack resonators. Optics Express, 2006, 14(9): 3872–3886
https://doi.org/10.1364/OE.14.003872 pmid: 19516534
62 Soldano L B, de Vreede A I, Smit M K, Verbeek B H, Metaal E G, Groen F H. Mach-Zehnder interferometer polarization splitter in InGaAsP/InP. IEEE Photonics Technology Letters, 1994, 6(3): 402–405
https://doi.org/10.1109/68.275500
63 Tang Y, Dai D, He S. Proposal for a grating waveguide serving as both a polarization splitter and an efficient coupler for silicon-on-insulator nanophotonic circuits. IEEE Photonics Technology Letters, 2009, 21(4): 242–244
https://doi.org/10.1109/LPT.2008.2010528
64 Alam M Z, Meier J, Aitchison J S, Mojahedi M.Super mode propagation in low index medium. In: Proceeding of Photonic Applications Systems Technologies Conference, Optical Society of America, 2007, Jthd112
65 Oulton R F, Sorger V J, Genov D A, Pile D F P, Zhang X. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nature Photonics, 2008, 2(8): 496–500
https://doi.org/10.1038/nphoton.2008.131
66 Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal G, Zhang X. Plasmon lasers at deep subwavelength scale. Nature, 2009, 461(7264): 629–632
https://doi.org/10.1038/nature08364 pmid: 19718019
67 Fujii M, Leuthold J, Freude W. Dispersion relation and loss of subwavelength confined mode oof metal-dielectric-gap optical waveguides. IEEE Photonics Technology Letters, 2009, 21(6): 362–364
https://doi.org/10.1109/LPT.2008.2011995
68 Sorin W V, Kim B Y, Shaw H J. Highly selective evanescent modal filter for two-mode optical fibers. Optics Letters, 1986, 11(9): 581–583
https://doi.org/10.1364/OL.11.000581 pmid: 19738695
69 Li A, Chen X, Amin A A, Shieh W. Fused fiber mode couplers for few-mode transmission. IEEE Photonics Technology Letters, 2012, 24(21): 1953–1956
https://doi.org/10.1109/LPT.2012.2218803
70 Fontaine N K, Doerr C R, Mestre M A, Ryf R, Winzer P, Buhl L, Sun Y, Jiang X, Lingle R.Space-division multiplexing and all-optical MIMO demultiplexing using a photonic integrated circuit. In: Proceeding of Optical Fiber Communication Conference, Optical Society of America, 2012, PDP5B. 1
71 Wohlfeil B, Stamatiadis C, Zimmermann L, Petermann K.Compact fiber grating coupler on SOI for coupling of higher order fiber modes. In: Proceeding of Optical Fiber Communication Conference, Optical Society of America, 2013, OTh1B. 2
72 Ding Y, Ou H, Xu J, Peucheret C. Silicon photonic integrated circuit mode multiplexer. IEEE Photonics Technology Letters, 2013, 25(7): 648–651
https://doi.org/10.1109/LPT.2013.2247394
73 Koonen A M J, Chen H, Van den Boom H P A, Raz O. Silicon photonic integrated mode multiplexer and demultiplexer. IEEE Photonics Technology Letters, 2012, 24(21): 1961–1964
https://doi.org/10.1109/LPT.2012.2219304
74 Uematsu T, Ishizaka Y, Kawaguchi Y, Saitoh K, Koshiba M. Design of a compact two-mode multi/demultiplexer consisting of multi-mode interference waveguides and a wavelength insensitive phase shifter for mode-division multiplexing transmission. Journal of Lightwave Technology, 2012, 30(15): 2421–2426
https://doi.org/10.1109/JLT.2012.2199961
75 Greenberg M, Orenstein M. Multimode add-drop multiplexing by adiabatic linearly tapered coupling. Optics Express, 2005, 13(23): 9381–9387
https://doi.org/10.1364/OPEX.13.009381 pmid: 19503139
76 Greenberg M Y, Orenstein M.Mode add drop for optical interconnects based on adiabatic high order mode couplers. In: Proceedings of Quantum Electronics and Laser Science Conference, Optical Society of America, 2005, JTuC55
77 Xing J, Li Z, Xiao X, Yu J, Yu Y. Two-mode multiplexer and demultiplexer based on adiabatic couplers. Optics Letters, 2013, 38(17): 3468–3470
https://doi.org/10.1364/OL.38.003468 pmid: 23988986
78 Love J D, Vance R W C, Joblin A. Asymmetric, adiabatic multipronged planar splitters. Optical and Quantum Electronics, 1996, 28(4): 353–369
https://doi.org/10.1007/BF00287024
79 Lee B T, Shin S Y. Mode-order converter in a multimode waveguide. Optics Letters, 2003, 28(18): 1660–1662
https://doi.org/10.1364/OL.28.001660 pmid: 13677528
80 Low A L Y, Yong Y S, You A H, Chien S F, Teo C F. A five-order mode converter for multimode waveguide. IEEE Photonics Technology Letters, 2004, 16(7): 1673–1675
https://doi.org/10.1109/LPT.2004.828512
81 Riesen N, Love J D. Spatial mode-division-multiplexing of few-mode fiber. In: Proceedings of European Conference and Exhibition on Optical Communication, Optical Society of America, 2012, P2. 14
82 Riesen N, Love J D. Design of mode-sorting asymmetric Y-junctions. Applied Optics, 2012, 51(15): 2778–2783
https://doi.org/10.1364/AO.51.002778 pmid: 22614579
83 Driscoll J B, Grote R R, Souhan B, Dadap J I, Lu M, Osgood R M. Asymmetric Y junctions in silicon waveguides for on-chip mode-division multiplexing. Optics Letters, 2013, 38(11): 1854–1856
https://doi.org/10.1364/OL.38.001854 pmid: 23722767
84 Chen W, Wang P, Yang J. Mode multi/demultiplexer based on cascaded asymmetric Y-junctions. Optics Express, 2013, 21(21): 25113–25119
https://doi.org/10.1364/OE.21.025113 pmid: 24150354
85 Bagheri S, Green W. Silicon-on-insulator mode-selective add-drop unit for on-chip mode-division multiplexing. In: Proceedings of 2009 6th IEEE International Conference on Group IV Photonics, 2009
86 Dai D, Wang J, Shi Y. Silicon mode (de)multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light. Optics Letters, 2013, 38(9): 1422–1424
https://doi.org/10.1364/OL.38.001422 pmid: 23632505
87 Hanzawa N, Saitoh K, Sakamoto T, Matsui T, Tsujikawa K, Koshiba M, Yamamoto F. Two-mode PLC-based mode multi/demultiplexer for mode and wavelength division multiplexed transmission. Optics Express, 2013, 21(22): 25752–25760
https://doi.org/10.1364/OE.21.025752 pmid: 24216801
88 Qiu H, Yu H, Hu T, Jiang G, Shao H, Yu P, Yang J, Jiang X. Silicon mode multi/demultiplexer based on multimode grating-assisted couplers. Optics Express, 2013, 21(15): 17904–17911
https://doi.org/10.1364/OE.21.017904 pmid: 23938662
89 Luo L W, Ophir N, Chen C, Gabrielli L H, Poitras C B, Bergman K, Lipson M. Simultaneous mode and wavelength division multiplexing on-chip. arXiv preprint arXiv:1306.2378, 2013
90 Ding Y, Xu J, Da Ros F, Huang B, Ou H, Peucheret C. On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer. Optics Express, 2013, 21(8): 10376–10382
https://doi.org/10.1364/OE.21.010376 pmid: 23609748
91 Wang J, He S, Dai D. On-chip silicon 8-channel hybrid (de) multiplexer enabling simultaneous mode-and polarization-division-multiplexing. Laser & Photonics Reviews, 2014, 8(2): L18–L22
https://doi.org/10.1002/lpor.201300157
92 Wang J, Chen P, Chen S, Shi Y, Dai D. Improved 8-channel silicon mode demultiplexer with grating polarizers. Optics Express, 2014, 22(11): 12799–12807
https://doi.org/10.1364/OE.22.012799 pmid: 24921475
93 Wang Z, Dai D. Ultrasmall Si-nanowire-based polarization rotator. JOSA B, 2008, 25(5): 747–753
94 Wang J, Chen S, Dai D. Silicon hybrid demultiplexer with 64 channels for wavelength/mode-division multiplexed on-chip optical interconnects. Optics Letters, 2014, 39(24): 6993–6996
https://doi.org/10.1364/OL.39.006993 pmid: 25503049
95 Dai D, Wang J, Chen S, Wang S, He S. Monolithically integrated 64-channel silicon hybrid demultiplexer enabling simultaneous wavelength-and mode-division-multiplexing. Laser & Photonics Reviews, 2015, 9(3): 339–344
https://doi.org/10.1002/lpor.201400446
[1] Long ZHU, Jian WANG. A review of multiple optical vortices generation: methods and applications[J]. Front. Optoelectron., 2019, 12(1): 52-68.
[2] Saket KAUSHAL, Rui Cheng, Minglei Ma, Ajay Mistry, Maurizio Burla, Lukas Chrostowski, José Azaña. Optical signal processing based on silicon photonics waveguide Bragg gratings: review[J]. Front. Optoelectron., 2018, 11(2): 163-188.
[3] Yong ZHANG, Yu HE, Qingming ZHU, Xinhong JIANG, Xuhan Guo, Ciyuan QIU, Yikai SU. On-chip silicon polarization and mode handling devices[J]. Front. Optoelectron., 2018, 11(1): 77-91.
[4] Mengying HE,Shasha LIAO,Li LIU,Jianji DONG. Theoretical analysis for optomechanical all-optical transistor[J]. Front. Optoelectron., 2016, 9(3): 406-411.
[5] Xinlun CAI,Michael STRAIN,Siyuan YU,Marc SOREL. Photonic integrated devices for exploiting the orbital angular momentum of light in optical communications[J]. Front. Optoelectron., 2016, 9(3): 518-525.
[6] Charles CAER,Xavier LE ROUX,Samuel SERNA,Weiwei ZHANG,Laurent VIVIEN,Eric CASSAN. Large group-index bandwidth product empty core slow light photonic crystal waveguides for hybrid silicon photonics[J]. Front. Optoelectron., 2014, 7(3): 376-384.
[7] Zhiyong LI, Liang ZHOU, Xi XIAO, Tao CHU, Yude YU, Jinzhong YU. Improved extinction ratio of Mach-Zehnder based optical modulators on CMOS platform[J]. Front Optoelec, 2012, 5(1): 90-93.
[8] Guangzhao RAN, Hongqiang LI, Chong WANG. On-chip silicon light source: from photonics to plasmonics[J]. Front Optoelec, 2012, 5(1): 3-6.
[9] Eric CASSAN, Xavier LE ROUX, Charles CAER, Ran HAO, Damien BERNIER, Delphine MARRIS-MORINI, Laurent VIVIEN. Silicon slow light photonic crystals structures: present achievements and future trends[J]. Front Optoelec Chin, 2011, 4(3): 243-253.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed