Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2016, Vol. 9 Issue (3) : 497-507    https://doi.org/10.1007/s12200-016-0561-z
REVIEW ARTICLE
GaAs-based polarization modulators for microwave photonic applications
Yu XIANG,Shilong PAN()
Key Laboratory of Radar Imaging and Microwave Photonics, Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
 Download: PDF(300 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

GaAs-based polarization modulators (PolMs) exhibit the unique characteristic of simultaneous intensity and complementary phase modulation owing to the linear electro-optic (LEO) effect determined by crystallographic orientations of the device. In this paper, we reviewed the principle of operation, the design and fabrication flows of a GaAs-based PolM. Analytical models are established, from which the features of a PolM are derived and discussed in detail. The recent advances in PolM-based multifunctional systems, in particular the PolM-based optoelectronic oscillator (OEO) are demonstrated with an emphasis on the remarkable development of applications for frequency conversion, tunable microwave photonic filter (MPF), optical frequency comb (OFC), arbitrary waveform generation (AWG) and beamforming. Challenges in practical implementation of the PolM-based systems and their promising future are discussed as well.

Keywords GaAs      polarization modulator (PolM)      optoelectronic oscillator (OEO)      frequency conversion      microwave photonics filter (MPF)     
Corresponding Author(s): Shilong PAN   
Just Accepted Date: 11 January 2016   Online First Date: 18 February 2016    Issue Date: 28 September 2016
 Cite this article:   
Yu XIANG,Shilong PAN. GaAs-based polarization modulators for microwave photonic applications[J]. Front. Optoelectron., 2016, 9(3): 497-507.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-016-0561-z
https://academic.hep.com.cn/foe/EN/Y2016/V9/I3/497
Fig.1  Calculated cross-sectional intensity of fundamental TE mode at 1.5 mm confined in the GaAs layer
Fig.2  Schematic of a PolM with slow-wave, CPS, TW electrodes
Fig.3  (a) Layer configuration of a typical GaAs-based PolM; (b) definition of the rib waveguide by dry etching; (c) deposition of the metal electrodes by a standard lift-off process
Fig.4  Schematic of a PolM-based frequency-doubling OEO. LD: laser diode, PC: polarization controller, PolM: polarization modulator, PD: photodiode, EA: electric amplifier, EBPF: electric bandpass filter
Fig.5  Schematic of the proposed phased array antenna, in which the optical beamforming network is based on the phase shifter [61]. LD: laser diode, PC: polarization controller, PolM: polarization modulator, OBPF: optical bandpass filter, PD: photodetector
1 Seeds A J. Microwave photonics. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3): 877–887
https://doi.org/10.1109/22.989971
2 Capmany J, Novak D. Microwave photonics combines two worlds. Nature Photonics, 2007, 1(6): 319–330
https://doi.org/10.1038/nphoton.2007.89
3 Yao J. Microwave Photonics. Journal of Lightwave Technology, 2009, 27(3): 314–335
https://doi.org/10.1109/JLT.2008.2009551
4 Capmany J, Li G, Lim C, Yao J. Microwave photonics: current challenges towards widespread application. Optics Express, 2013, 21(19): 22862–22867
https://doi.org/10.1364/OE.21.022862 pmid: 24104173
5 Yao J. Photonic generation of microwave arbitrary waveforms. Optics Communications, 2011, 284(15): 3723–3736
https://doi.org/10.1016/j.optcom.2011.02.069
6 Capmany J, Mora J, Gasulla I, Sancho J, Lloret J, Sales S. Microwave photonic signal processing. Journal of Lightwave Technology, 2013, 31(4): 571–586
https://doi.org/10.1109/JLT.2012.2222348
7 Pan S, Zhu D, Zhang F Z. Microwave photonics for modern Radar systems. Transactions of Nanjing University of Aeronautics and Astronautics, 2014, 31(3): 219–240
8 Sotom M, Benazet B, Kernec A L, Maignan M. Microwave photonic technologies for flexible satellite telecom payloads. In: Proceedings of 35th European Conference on Optical Communication, Vienna, IEEE, 2009, 1–4
9 Koonen A M J, Larrode M G, Ng'oma A, Wang K, Yang H, Zheng Y, Tangdiongga E. Perspectives of Radio over fiber technologies. In: Proceedings of Optical Fiber Communication Conference, San Diego, IEEE, 2008, 1–3
10 Yamada M, Haraguchi Y. Linewidth broadening of SCH quantum-well lasers enhanced by carrier fluctuation in optical guiding layer. IEEE Journal of Quantum Electronics, 1987, 23(6): 1054–1058
11 Olsen C M, Izadpanah H, Lin C. Wavelength chirp in a high-kL quarter-wave-shifted DFB laser: characterization and influence on system performance. Journal of Lightwave Technology, 1990, 8(12): 1810–1815
https://doi.org/10.1109/50.62875
12 Jungerman R L, Johnsen C, McQuate D J, Salomaa K, Zurakowski M P, Bray R C, Conrad G, Cropper D, Hernday P. High-speed optical modulator for application in instrumentation. Journal of Lightwave Technology, 1990, 8(9): 1363–1370
https://doi.org/10.1109/50.59166
13 Wang S Y, Lin S H. High speed III–V electrooptic waveguide modulators at l=1.3 mm. Journal of Lightwave Technology, 1988, 6(6): 758–771
https://doi.org/10.1109/50.4064
14 Wood T H. Multiple quantum well (MQW) waveguide modulators. Journal of Lightwave Technology, 1988, 6(6): 743–757
https://doi.org/10.1109/50.4063
15 Chaciński M, Westergren U, Stoltz B, Thylén L, Schatz R, Hammerfeldt S. Monolithically Integrated 100 GHz DFB-TWEAM. Journal of Lightwave Technology, 2009, 27(16): 3410–3415
https://doi.org/10.1109/JLT.2009.2015773
16 Ueda Y, Fujisawa T, Kanazawa S, Kobayashi W, Takahata K, Ishii H. Very-low-voltage operation of Mach-Zehnder interferometer-type electroabsorption modulator using asymmetric couplers. Optics Express, 2014, 22(12): 14610–14616
https://doi.org/10.1364/OE.22.014610 pmid: 24977556
17 Wu T H, Chiu Y J, Lin F Z. High-speed (60 GHz) and low-voltage-driving electroabsorption modulator using two-consecutive-steps selective-undercut-wet-etching waveguide. IEEE Photonics Technology Letters, 2008, 20(14): 1261–1263
https://doi.org/10.1109/LPT.2008.926032
18 Liu A, Liao L, Rubin D, Nguyen H, Ciftcioglu B, Chetrit Y, Izhaky N, Paniccia M. High-speed optical modulation based on carrier depletion in a silicon waveguide. Optics Express, 2007, 15(2): 660–668
https://doi.org/10.1364/OE.15.000660 pmid: 19532289
19 Spickermann R, Sakamoto S R, Peters M G, Dagli N. GaAs/AlGaAs travelling wave electro-optic modulator with an electrical bandwidth>40 GHz. Electronics Letters, 1996, 32(12): 1095–1096
https://doi.org/10.1049/el:19960745
20 Koren U, Koch T L, Presting H, Miller B I. InGaAs/InP multiple quantum well waveguide phase modulator. Applied Physics Letters, 1987, 50(7): 368–370
https://doi.org/10.1063/1.98201
21 Noguchi K, Mitomi O, Miyazawa H. Millimeter-wave Ti:LiNbO3 optical modulators. Journal of Lightwave Technology, 1998, 16(4): 615–619
https://doi.org/10.1109/50.664072
22 Lee M, Katz H E, Erben C, Gill D M, Gopalan P, Heber J D, McGee D J. Broadband modulation of light by using an electro-optic polymer. Science, 2002, 298(5597): 1401–1403
https://doi.org/10.1126/science.1077446 pmid: 12434054
23 Walker R G. High speed electrooptic modulation in GaAs/GaAlAs waveguide devices. Journal of Lightwave Technology, 1987, 5(10): 1444–1453
https://doi.org/10.1109/JLT.1987.1075432
24 Walker R G. Broadband (6 GHz) GaAs/AlGaAs electro-optic modulator with low drive power. Applied Physics Letters, 1989, 54(17): 1613–1615
https://doi.org/10.1063/1.101323
25 Walker R G, Bennion I, Carter A C. Low-voltage, 50 W, GaAs/AlGaAs travelling-wave modulator with bandwidth exceeding 25 GHz. Electronics Letters, 1989, 25(23): 1549–1550
https://doi.org/10.1049/el:19891041
26 Walker R G. High-speed III–V semiconductor intensity modulators. IEEE Journal of Quantum Electronics, 1991, 27(3): 654–667
https://doi.org/10.1109/3.81374
27 Lin S H, Wang S Y, Houng Y M. GaAs pin electro-optic travelling-wave modulator at 1.3 mm. Electronics Letters, 1986, 22(18): 934–935
https://doi.org/10.1049/el:19860636
28 Wang S Y, Lin S H, Houng Y M. GaAs travelling-wave polarization electro-optic waveguide modulator with bandwidth in excess of 20 GHz at 1.3 mm. Applied Physics Letters, 1987, 51(2): 83–85 doi:10.1063/1.98982
29 Kim I, Tan M R T, Wang S Y. Analysis of a new microwave low-loss and velocity-matched III–V transmission line for travelling-wave electrooptic modulators. Journal of Lightwave Technology, 1990, 8(5): 728–738
https://doi.org/10.1109/50.54481
30 Nees J, Williamson S, Mourou G. 100 GHz travelling-wave electro-optic phase modulator. Applied Physics Letters, 1989, 54(20): 1962–1964
https://doi.org/10.1063/1.101185
31 Jaeger N A F, Lee Z K F. Slow-wave electrode for use in compound semiconductor electrooptic modulators. IEEE Journal of Quantum Electronics, 1992, 28(8): 1778–1784
https://doi.org/10.1109/3.142575
32 Jaeger N A F, Rahmatian F, Kato H, James R, Berolo E, Lee Z K F. Velocity-matched electrodes for compound semiconductor travelling-wave electrooptic modulators: experimental results. IEEE Microwave and Guided Wave Letters, 1996, 6(2): 82–84
https://doi.org/10.1109/75.481996
33 Spickermann R, Dagli N. Millimeter wave coplanar slow wave structure on GaAs suitable for use in electro-optic modulators. Electronics Letters, 1993, 29(9): 774–775
https://doi.org/10.1049/el:19930518
34 Sakamoto S R, Spickermann R, Dagli N. Narrow gap coplanar slow wave electrode for travelling wave electro-optic modulators. Electronics Letters, 1995, 31(14): 1183–1185
https://doi.org/10.1049/el:19950779
35 Spickermann R, Peters M G, Dagli N. A polarization independent GaAs-AlGaAs electrooptic modulator. IEEE Journal of Quantum Electronics, 1996, 32(5): 764–769 doi:10.1109/3.492998
36 Shin J H, Wu S, Dagli N. Bulk undoped GaAs–AlGaAs substrate-removed electrooptic modulators with 3.7-V-cm drive voltage at 1.55 mm. IEEE Photonics Technology Letters, 2006, 18(21): 2251–2253
https://doi.org/10.1109/LPT.2006.884729
37 Shin J H, Chang Y C, Dagli N. 0.3 V drive voltage GaAs/AlGaAs substrate removed Mach-Zehnder intensity modulators. Applied Physics Letters, 2008, 92(20): 201103, 201103–3
https://doi.org/10.1063/1.2931057
38 Rahmatian F, Jaeger N A F, James R, Berolo E. An ultrahigh-speed AlGaAs-GaAs polarization converter using slow-wave coplanar electrodes. IEEE Photonics Technology Letters, 1998, 10(5): 675–677 doi:10.1109/68.669244
39 Grossard N, Forte H, Vilcot J P, Beche B, Goedgebuer J P. AlGaAs-GaAs polarization converter with electrooptic phase mismatch control. IEEE Photonics Technology Letters, 2001, 13(8): 830–832
https://doi.org/10.1109/68.935818
40 Bull J D, Jaeger N A F, Kato H, Fairburn M, Reid A, Ghanipour P. 40 GHz electro-optic polarization modulator for fiber optic communications systems. Proceedings of the Society for Photo-Instrumentation Engineers, 2004, 5577: 133–143
https://doi.org/10.1117/12.567640
41 Yariv A. Introduction to Optical Electronics. 2nd ed. New York: Holt, Rinehart, and Winston, 1976
42 Khazaei H R, Berolo O, James R, Wang W J, Maigné P, Young M, Ozard K, Reeves M, Ghannouchi F M. Charge carrier effect on the microwave losses observed on traveling-wave electrodes used in electro-optic modulators. Microwave and Optical Technology Letters, 1998, 17(4): 236–241 doi:10.1002/(SICI)1098-2760(199803)17:4<236::AID-MOP4>3.0.CO;2-J
43 Kiziloglu K, Dagli N, Matthaei G L, Long S I. Experimental analysis of transmission line parameters in high-speed GaAs digital circuit interconnects. IEEE Transactions on Microwave Theory and Techniques, 1991, 39(8): 1361–1367
https://doi.org/10.1109/22.85411
44 Colin R E. Foundation for Microwave Engineering. 2nd ed. Hoboken: John Wiley & Sons, 2007
45 Yao X S, Maleki L. High frequency optical subcarrier generator. Electronics Letters, 1994, 30(18): 1525–1526
46 Zhang H, Pan S, Huang M, Chen X. Polarization-modulated analog photonic link with compensation of the dispersion-induced power fading. Optics Letters, 2012, 37(5): 866–868
https://doi.org/10.1364/OL.37.000866 pmid: 22378420
47 Pan S, Yao J. A frequency-doubling optoelectronic oscillator using a polarization modulator. IEEE Photonics Technology Letters, 2009, 21(13): 929–931
https://doi.org/10.1109/LPT.2009.2020685
48 Pan S, Yao J. Tunable subterahertz wave generation based on photonic sextupling using a polarization modulator and a wavelength fixed notch filter. IEEE Transactions on Microwave Theory and Techniques, 2000, 58(7): 1967–1975
49 Zhu D, Pan S, Ben D. Tunable frequency-quadrupling dual-loop optoelectronic oscillator. IEEE Photonics Technology Letters, 2012, 24(3): 194–196
https://doi.org/10.1109/LPT.2011.2176332
50 Zhu D, Liu S, Pan S. Multichannel up-conversion based on polarization –modulated optoelectronic oscillator. IEEE Photonics Technology Letters, 2014, 26(6): 544–547
https://doi.org/10.1109/LPT.2013.2296898
51 Zhu D, Pan S, Cai S, Ben D. High-performance photonic microwave downconverter based on a frequency-doubling optoelectronic oscillator. Journal of Lightwave Technology, 2012, 30(18): 3036–3042
https://doi.org/10.1109/JLT.2012.2211096
52 Tang Z, Pan S. Transmission of 3-Gb/s uncompressed HD video in an optoelectronic-oscillator-based radio over fiber link. In: Proceeding of Radio and Wireless Symposium, Austin, IEEE, 2013, 319–321
53 Li W, Zhang W, Yao J. Frequency-hopping microwave waveform generation based on a frequency-tunable optoelectronic oscillator. In: Proceeding of Optical Fiber Communications Conference and Exhibition (OFC), San Francisco, IEEE, 2014, 1–3
54 Jiang Z, Huang C B, Leaird D E, Weiner A M. Optical arbitrary waveform processing of more than 100 spectral comb lines. Nature Photonics, 2007, 1(8): 463–467
https://doi.org/10.1038/nphoton.2007.139
55 Chen C, Zhang F, Pan S. Generation of seven-line optical frequency comb based on a single polarization modulator. IEEE Photonics Technology Letters, 2013, 25(22): 2164–2166
https://doi.org/10.1109/LPT.2013.2282404
56 Li W, Wang W T, Sun W H, Wang L X, Liu J G, Zhu N H. Generation of flat optical frequency comb using a single polarization modulator and a Brillouin-assisted power equalizer. IEEE Photonics Journal, 2014, 6(2): 1–8
https://doi.org/10.1109/JPHOT.2014.2311455
57 He C, Pan S, Guo R, Zhao Y, Pan M. Ultraflat optical frequency comb generated based on cascaded polarization modulators. Optics Letters, 2012, 37(18): 3834–3836
https://doi.org/10.1364/OL.37.003834 pmid: 23041875
58 Wang M, Yao J. Tunable optical frequency comb generation based on an optoelectronic oscillator. IEEE Photonics Technology Letters, 2013, 25(21): 2035–2038 doi:10.1109/LPT.2013.2280666
59 Tang Z, Pan S, Zhu D, Guo R, Zhao Y, Pan M, Ben D, Yao J. Tunable optoelectronic oscillator based on a polarization modulator and a chirped FBG. IEEE Photonics Technology Letters, 2012, 24(17): 1487–1489
https://doi.org/10.1109/LPT.2012.2205235
60 Zhang Y, Pan S. Complex coefficient microwave photonic filter using a polarization-modulator-based phase shifter. IEEE Photonics Technology Letters, 2013, 25(2): 187–189
https://doi.org/10.1109/LPT.2012.2227692
61 Zhang Y, Wu H, Zhu D, Pan S. An optically controlled phased array antenna based on single sideband polarization modulation. Optics Express, 2014, 22(4): 3761–3765 doi:10.1364/OE.22.003761
pmid: 24663694
[1] Xixuan LIU, Xi TANG, Zhengmao WU, Guangqiong XIA. Time-delay signature characteristics of the chaotic output from an optoelectronic oscillator by introducing an optical feedback[J]. Front. Optoelectron., 2020, 13(4): 402-408.
[2] Zhuo DENG,Jiqiang NING,Rongxin WANG,Zhicheng SU,Shijie XU,Zheng XING,Shulong LU,Jianrong DONG,Hui YANG. Influence of temperature and reverse bias on photocurrent spectrum and supra-bandgap spectral response of monolithic GaInP/GaAs double-junction solar cell[J]. Front. Optoelectron., 2016, 9(2): 306-311.
[3] Xiaoping ZHENG,Shangyuan LI,Hanyi ZHANG,Bingkun ZHOU. Researches in microwave photonics based packages for millimeter wave system with wide bandwidth and large dynamic range[J]. Front. Optoelectron., 2016, 9(2): 186-193.
[4] Ming LI,Ninghua ZHU. Recent advances in microwave photonics[J]. Front. Optoelectron., 2016, 9(2): 160-185.
[5] Tianyi WANG,Zhengang YANG,Si ZOU,Kejia WANG,Shenglie WANG,Jinsong LIU. Time behavior of field screening effects in small-size GaAs photoconductive terahertz antenna[J]. Front. Optoelectron., 2015, 8(1): 98-103.
[6] Xianjie LI, Yonglin ZHAO, Daomin CAI, Qingming ZENG, Yunzhang PU, Yana GUO, Zhigong WANG, Rong WANG, Ming QI, Xiaojie CHEN, Anhuai XU. Monolithically integrated long wavelength photoreceiver OEIC based on InP/InGaAs HBT technology[J]. Front Optoelec Chin, 2008, 1(3-4): 336-340.
[7] Xianjie LI, Yingbin LIU, Zhen FENG, Fan GUO, Yonglin ZHAO, Run ZHAO, Rui ZHOU, Chen LOU, Shizu ZHANG. AlGaAs/GaAs quantum well infrared photodetector focal plane array based on MOCVD technology[J]. Front Optoelec Chin, 2008, 1(3-4): 313-317.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed