Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2016, Vol. 9 Issue (3) : 508-517    https://doi.org/10.1007/s12200-016-0570-y
REVIEW ARTICLE
Key technologies in chaotic optical communications
Junxiang KE,Lilin YI(),Tongtong HOU,Weisheng HU
The State Key Lab of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
 Download: PDF(556 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, the key technologies and research progress of chaotic optical communication are reviewed. We first discuss the chaos generation methods based on different nonlinear components. Then we focus on the frontiers of chaotic optical communications, including how to improve the security, and the development about the transmission capacity and distance of chaotic optical communication in laboratory and field. At last, we discuss limitations and potentials of chaotic optical communications and draw a conclusion.

Keywords chaos      chaotic optical communications      security      capacity      time delay concealment     
Corresponding Author(s): Lilin YI   
Just Accepted Date: 03 August 2016   Online First Date: 06 September 2016    Issue Date: 28 September 2016
 Cite this article:   
Junxiang KE,Lilin YI,Tongtong HOU, et al. Key technologies in chaotic optical communications[J]. Front. Optoelectron., 2016, 9(3): 508-517.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-016-0570-y
https://academic.hep.com.cn/foe/EN/Y2016/V9/I3/508
Fig.1  Schematic of chaos generation induced by semiconductor lasers. (a) Optical feedback; (b) optical injection; (c) optoelectronic feedback (Ref. [11])
Fig.2  Schematic of chaos induced by Mach-Zehnder modulator (MZM) (Ref. [13]). SC: semiconductor; MZM: Mach-Zehnder modulator; RF: radio frequency; PD: photodetector
Fig.3  Schematic of chaos induced by quadrature phase-shift-keying (QPSK) electro-optic modulator (Ref. [14]). LD: laser diode; QPSK-M: quatrature phase-shift-keying modulator; RF: radio frequency; amp: amplifier; SMF: single mode fiber; Att: attenuator; OC: optical coupler; PD: photodiode
Fig.4  Phase chaos emitter setup (Ref. [11]). SL: semiconductor laser; PM: phase modulator; RF: radio frequency; PD: photodiode; MZI: Mach-Zehnder interferometer
Fig.5  Time delay concealment in autocorrelation function and mutual information (Ref. [10])
Fig.6  Schematic of semiconductor ring lasers with cross-feedback (Ref. [18]). CW: clockwise mode; CCW: counter-clockwise mode; SRL: semiconductor ring lasers
Fig.7  A new scheme of time delay concealment [19]. LD: laser diode; PD: photodiode; OSC: oscilloscope; OA: optical attenuator; TDC: tunable dispersion compensator
Fig.8  Results of time delay concealment in auto correlation (a) and power spectrum (b) with different dispersion values (Ref. [19])
Fig.9  Cascaded all-optical chaos and electro-optic phase-chaos systems for time delay concealment (Ref. [20]). PM: phase modulator; MZI: Mach-Zehnder interferometer; RF: radio frequency; PD: photodiode
Fig.10  Schematic of digital key introduction into phase chaos generator in serial configuration for time delay concealment (Ref. [21]). SL: semiconductor laser; PM: phase modulator; MZI: Mach-Zehnder interferometer; RF: radio frequency; PD: photodiode
Fig.11  Schematic of digital key introduced into phase chaos generator in parallel configuration for time delay concealment (Ref. [22]). SL: semiconductor laser; PM: phase modulator; MZI: Mach-Zehnder interferometer; RF: radio frequency; PD: photodiode
Fig.12  Schematic of (a) electro-optical feedback; (b) the schematic of all-optical feedback; (c) eye diagrams in the electro-optic set-up, (d) field experiment of fiber transmission (Ref. [5]). LD: laser diode; MZ: Mach-Zehnder modulator; OI: optical isolator; EDFA: erbium-doped fiber amplifier; DL: delay line; AMP: amplifier; OC: optical coupler; PD: photodiode; IPD: inverse photodiode; PC: polarization controller; R: reflector; MOD: modulator
Fig.13  Field demonstration of phase chaos based optical communications operated at 10 Gb/s bit rate (Ref. [6]). LD: laser diode; PM: phase modulator; OC: optical coupler; Amp: amplifier; PD: photodiode; DL: delay line; OA: optical attenuator; DPSK: differential phase-shifted-keying; SMF: single mode fiber; DCM: dispersion compensation module; EDFA: erbium-doped fiber amplifier; VDL: variable delay line; PC: polarization controller
1 Maiman T H. Optical and microwave-optical experiments in ruby. Physical Review Letters, 1960, 4(11): 564–566
https://doi.org/10.1103/PhysRevLett.4.564
2 Lorenz E N. Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, 1963, 20(2): 130–141
https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
3 Haken H. Analogy between higher instabilities in fluids and lasers. Physics Letters A, 1975, 53(1): 77–78
https://doi.org/10.1016/0375-9601(75)90353-9
4 Pecora L M, Carroll T L. Synchronization in chaotic systems. Physical Review Letters, 1990, 64(8): 821–824
https://doi.org/10.1103/PhysRevLett.64.821 pmid: 10042089
5 Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, García-Ojalvo J, Mirasso C R, Pesquera L, Shore K A. Chaos-based communications at high bit rates using commercial fibre-optic links. Nature, 2005, 438(7066): 343–346
https://doi.org/10.1038/nature04275 pmid: 16292256
6 Lavrov R, Jacquot M, Larger L. Nonlocal nonlinear electro-optic phase dynamics demonstrating 10 Gb/s chaos communications. IEEE Journal of Quantum Electronics, 2010, 46(10): 1430–1435
https://doi.org/10.1109/JQE.2010.2049987
7 Masoller C. Anticipation in the synchronization of chaotic semiconductor lasers with optical feedback. Physical Review Letters, 2001, 86(13): 2782–2785
https://doi.org/10.1103/PhysRevLett.86.2782 pmid: 11290038
8 Wu Y, Wang Y, Li P, Wang A, Zhang M. Can fixed time delay signature be concealed in chaotic semiconductor laser with optical feedback? IEEE Journal of Quantum Electronics, 2012, 48(11): 1371–1379
https://doi.org/10.1109/JQE.2012.2212001
9 Rontani D, Locquet A, Sciamanna M, Citrin D S, Ortin S. Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view. IEEE Journal of Quantum Electronics, 2009, 45(7): 879–891
https://doi.org/10.1109/JQE.2009.2013116
16 Ortín S, Gutiérrez J M, Pesquera L, Vasquez H. Nonlinear dynamics extraction for time-delay systems using modular neural networks synchronization and prediction. Physica A: Statistical Mechanics & Its Applications, 2005, 351(1): 133–141
17 Nguimdo R M, Soriano M C, Colet P. Role of the phase in the identification of delay time in semiconductor lasers with optical feedback. Optics Letters, 2011, 36(22): 4332–4334
https://doi.org/10.1364/OL.36.004332 pmid: 22089554
10 Rontani D, Locquet A, Sciamanna M, Citrin D S. Loss of time-delay signature in the chaotic output of a semiconductor laser with optical feedback. Optics Letters, 2007, 32(20): 2960–2962
https://doi.org/10.1364/OL.32.002960 pmid: 17938666
11 Uchida A. Optical Communication with Chaotic Lasers. Hoboken: Wiley, 2012
12 Goedgebuer J P, Levy P, Larger L, Chen C C, Rhodes W T. Optical communication with synchronized hyperchaos generated electrooptically. IEEE Journal of Quantum Electronics, 2002, 38(9): 1178–1183
https://doi.org/10.1109/JQE.2002.802025
13 Nguimdo R M. Chaos and Synchronization in opto-electronic devices with delayed feedback. Dissertation for the Doctoral Degree. Illes Balears: Universitat de les Illes Balears, 2011
14 Nourine M, Chembo Y K, Larger L. Wideband chaos generation using a delayed oscillator and a two-dimensional nonlinearity induced by a quadrature phase-shift-keying electro-optic modulator. Optics Letters, 2011, 36(15): 2833–2835
https://doi.org/10.1364/OL.36.002833 pmid: 21808328
15 Lavrov R, Peil M, Jacquot M, Larger L, Udaltsov V, Dudley J. Electro-optic delay oscillator with nonlocal nonlinearity: optical phase dynamics, chaos, and synchronization. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2009, 80(2): 026207
https://doi.org/10.1103/PhysRevE.80.026207 pmid: 19792231
18 Nguimdo R M, Verschaffelt G, Danckaert J, Van der Sande G. Loss of time-delay signature in chaotic semiconductor ring lasers. Optics Letters, 2012, 37(13): 2541–2543
https://doi.org/10.1364/OL.37.002541 pmid: 22743448
19 Hou T, Yi L, Ke J. Time delay signature concealment in chaotic systems for enhanced security. Submitted to Photonics Research, 2016
20 Hizanidis J, Deligiannidis S, Bogris A, Syvridis D. Enhancement of chaos encryption potential by combining all-optical and electrooptical chaos generators. IEEE Journal of Quantum Electronics, 2010, 46(11): 1642–1649
https://doi.org/10.1109/JQE.2010.2055837
21 Nguimdo R M, Colet P, Larger L, Pesquera L. Digital key for chaos communication performing time delay concealment. Physical Review Letters, 2011, 107(3): 034103
https://doi.org/10.1103/PhysRevLett.107.034103 pmid: 21838363
22 Nguimdo R M, Colet P. Electro-optic phase chaos systems with an internal variable and a digital key. Optics Express, 2012, 20(23): 25333–25344
https://doi.org/10.1364/OE.20.025333 pmid: 23187350
23 Aromataris G, Annovazzi-Lodi V. Enhancing privacy of chaotic communications by double masking. IEEE Journal of Quantum Electronics, 2013, 49(11): 955–959
https://doi.org/10.1109/JQE.2013.2283584
24 Ursini L, Santagiustina M, Annovazzi-Lodi V. Enhancing chaotic communication performances by Manchester coding. IEEE Photonics Technology Letters, 2008, 20(6): 401–403
https://doi.org/10.1109/LPT.2008.916918
25 Van Wiggeren G D, Roy R. Communication with chaotic lasers. Science, 1998, 279(5354): 1198–1200
https://doi.org/10.1126/science.279.5354.1198 pmid: 9469808
26 Anishchenko V S, Vadivasova T E, Postnov D E, Safonova M A. Synchronization of chaos. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 1992, 2(3): 633–644
https://doi.org/10.1142/S0218127492000756
27 Colet P, Roy R. Digital communication with synchronized chaotic lasers. Optics Letters, 1994, 19(24): 2056–2058
https://doi.org/10.1364/OL.19.002056 pmid: 19855738
28 Larger L, Goedgebuer J, Udaltsov V. Ikeda-based nonlinear delayed dynamics for application to secure optical transmission systems using chaos. Comptes Rendus Physique, 2004, 5(6): 669–681
https://doi.org/10.1016/j.crhy.2004.05.003
29 Annovazzi-Lodi V, Donati S, Scire A. Synchronization of chaotic lasers by optical feedback for cryptographic applications. IEEE Journal of Quantum Electronics, 1997, 33(9): 1449–1454
https://doi.org/10.1109/3.622622
30 Goedgebuer J P, Larger L, Porte H. Optical cryptosystem based on synchronization of hyperchaos generated by a delayed feedback tunable laser diode. Physical Review Letters, 1998, 80(10): 2249–2252
https://doi.org/10.1103/PhysRevLett.80.2249
31 Mirasso C R, Colet P, Garcia-Fernandez P. Synchronization of chaotic semiconductor lasers: application to encoded communications. IEEE Photonics Technology Letters, 1996, 8(2): 299–301
https://doi.org/10.1109/68.484273
32 Uchida A, Sato T, Kannari F. Suppression of chaotic oscillations in a microchip laser by injection of a new orbit into the chaotic attractor. Optics Letters, 1998, 23(6): 460–462
https://doi.org/10.1364/OL.23.000460 pmid: 18084544
33 Fischer I, Yun L,Davis P.Synchronization of chaotic semiconductor laser dynamics on subnanosecond time scales and its potential for chaos communication. Physical Review A (Atomic, Molecular, and Optical Physics), 2000, 62(1): 011801/1–4
34 Sivaprakasam S, Shore K A. Message encoding and decoding using chaotic external-cavity diode lasers. IEEE Journal of Quantum Electronics, 2000, 36(1): 35–39
https://doi.org/10.1109/3.817636
35 Tang S, Liu J M. Message encoding-decoding at 2.5 Gbits/s through synchronization of chaotic pulsing semiconductor lasers. Optics Letters, 2001, 26(23): 1843–1845
https://doi.org/10.1364/OL.26.001843 pmid: 18059712
36 Abarbanel H, Kennel M B, Illing L, Tang S, Chen H F, Liu J M. Synchronization and communication using semiconductor lasers with optoelectronic feedback. IEEE Journal of Quantum Electronics, 2001, 37(10): 1301–1311
https://doi.org/10.1109/3.952542
37 Kusumoto K, Ohtsubo J. 1.5-GHz message transmission based on synchronization of chaos in semiconductor lasers. Optics Letters, 2002, 27(12): 989–991
https://doi.org/10.1364/OL.27.000989 pmid: 18026341
38 Argyris A, Hamacher M, Chlouverakis K E, Bogris A, Syvridis D. Photonic integrated device for chaos applications in communications. Physical Review Letters, 2008, 100(19): 194101
https://doi.org/10.1103/PhysRevLett.100.194101 pmid: 18518451
39 Annovazzi-Lodi V, Benedetti M, Merlo S, Norgia M, Provinzano B. Optical chaos masking of video signals. IEEE Photonics Technology Letters, 2005, 17(9): 1995–1997
https://doi.org/10.1109/LPT.2005.853267
40 Argyris A, Grivas E, Hamacher M, Bogris A, Syvridis D. Chaos-on-a-chip secures data transmission in optical fiber links. Optics Express, 2010, 18(5): 5188–5198
https://doi.org/10.1364/OE.18.005188 pmid: 20389532
41 Gastaud N, Poinsot S, Larger L, Merolla J M, Hanna M, Goedgebuer J P, Malassenet F. Electro-optical chaos for multi-10 Gbit/s optical transmissions. Electronics Letters, 2004, 40(14): 898–899
https://doi.org/10.1049/el:20045072
[1] Xinhua ZHU, Mengfan CHENG, Lei DENG, Xingxing JIANG, Deming LIU. Extracting the time delay signature of coupled optical chaotic systems by mutual statistical analysis[J]. Front. Optoelectron., 2017, 10(4): 378-387.
[2] Daojun XUE,Shaohua YU,Qi YANG,Nan CHI,Lan RAO,Xiangjun XIN,Wei LI,Songnian FU,Sheng CUI,Demin LIU,Zhuo LI,Aijun WEN,Chongxiu YU,Xinmei WANG. Frontier research of ultra-high-speed ultra-large-capacity and ultra-long-haul optical transmission[J]. Front. Optoelectron., 2016, 9(2): 123-137.
[3] Bushra NAWAZ, Rameez ASIF. Impact of polarization mode dispersion and nonlinearities on 2-channel DWDM chaotic communication systems[J]. Front Optoelec, 2013, 6(3): 312-317.
[4] Xiang ZHOU. Enabling technologies and challenges for transmission of 400 Gb/s signals in 50 GHz channel grid[J]. Front Optoelec, 2013, 6(1): 30-45.
[5] Lingbo ZENG, Tao DENG, Zhengmao WU, Jiagui WU, Guangqiong XIA. Impacts of mismatched intrinsic parameter on leader-laggard synchronization between two mutually coupled VCSELs[J]. Front Optoelec Chin, 2011, 4(3): 298-307.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed