Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2016, Vol. 9 Issue (3) : 399-405    https://doi.org/10.1007/s12200-016-0571-x
RESEARCH ARTICLE
Large-range tunable fractional-order differentiator based on cascaded microring resonators
Ting YANG,Shasha LIAO,Li LIU,Jianji DONG()
Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(423 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, we experimentally demonstrate an all-optical continuously tunable fractional-order differentiator using on-chip cascaded electrically tuned microring resonators (MRRs). By changing the voltage applied on a MRR, the phase shift at the resonance frequency of the MRR varies, which can be used to implement tunable fractional-order differentiator. Hence fractional-order differentiator with a larger tunable range can be obtained by cascading more MRR units on a single chip. In the experiment, we applied two direct current voltage sources on two cascaded MRRs respectively, and a tunable order range of 0.57 to 2 have been demonstrated with Gaussian pulse injection, which is the largest tuning range to our knowledge.

Keywords all-optical devices      optical differentiator      optical signal processing     
Corresponding Author(s): Jianji DONG   
Just Accepted Date: 03 August 2016   Online First Date: 06 September 2016    Issue Date: 28 September 2016
 Cite this article:   
Ting YANG,Shasha LIAO,Li LIU, et al. Large-range tunable fractional-order differentiator based on cascaded microring resonators[J]. Front. Optoelectron., 2016, 9(3): 399-405.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-016-0571-x
https://academic.hep.com.cn/foe/EN/Y2016/V9/I3/399
Fig.1  (a)−(c) Microscope images of the cascaded MRRs, zoom-in ring region of MRR2 and zoom-in grating coupler, respectively
Fig.2  (a) Measured transmission spectrum of the cascaded MRRs; (b) is the zoom-in region of two resonance wavelengths aligned
Fig.3  (a) and (b) are the measured magnitude responses and phase responses with different voltages applied on a single MRR (MRR1), respectively. The biased voltages are set at 0, 0.8, 0.9, and 1.0 V. (c) and (d) are the measured magnitude responses and phase responses with different voltages applied on two MRRs (MRR1 and MRR3), respectively. The biased voltage pairs are set at (0.95 V, 0.95 V), (0.8 V, 0.9 V), (0 V, 0.9 V), and (0 V, 0 V). In these cases, two resonance wavelengths are aligned
Fig.4  Schematic diagram of the experimental setup
Fig.5  Output waveforms of SMF with different FWHMs. (a) FWHM is 30 ps; (b) FWHM is 18 ps
Fig.6  Experimental results for MRR1. (a)−(d) are the output waveforms with different voltages applied on MRR1, corresponding to differentiation orders of 0.57, 0.71, 0.84 and 0.97 respectively. (e) is the spectra of input Gaussian pulse (blue line) and the output waveform (red line) when N =0 .97
Fig.7  Experimental results for cascaded MRR1 and MRR3. (a)−(d) are the output waveforms with different voltages applied on MRR1 and MRR3, corresponding to differentiation orders of 1.55, 1.78, 1.94 and 2 respectively. (e) is the spectra of input Gaussian pulse (blue line) and the output waveform (red line) when N =2
1 Azaña J, Madsen C, Takiguchi K, Cincotti G. Guest editorial optical signal processing. Journal of Lightwave Technology, 2006, 24(7): 2484–2486
https://doi.org/10.1109/JLT.2006.879647
2 Ngo N Q, Yu S F, Tjin S C, Kam C H. A new theoretical basis of higher-derivative optical differentiators. Optics Communications, 2004, 230(1–3): 115–129
https://doi.org/10.1016/j.optcom.2003.11.048
3 Berger N K, Levit B, Fischer B, Kulishov M, Plant D V, Azaña J. Temporal differentiation of optical signals using a phase-shifted fiber Bragg grating. Optics Express, 2007, 15(2): 371–381
https://doi.org/10.1364/OE.15.000371 pmid: 19532253
4 Liu F, Wang T, Qiang L, Ye T, Zhang Z, Qiu M, Su Y. Compact optical temporal differentiator based on silicon microring resonator. Optics Express, 2008, 16(20): 15880–15886
https://doi.org/10.1364/OE.16.015880 pmid: 18825224
5 Slavík R, Park Y, Kulishov M, Morandotti R, Azaña J. Ultrafast all-optical differentiators. Optics Express, 2006, 14(22): 10699–10707
https://doi.org/10.1364/OE.14.010699 pmid: 19529477
6 Kulishov M, Azaña J. Long-period fiber gratings as ultrafast optical differentiators. Optics Letters, 2005, 30(20): 2700–2702
https://doi.org/10.1364/OL.30.002700 pmid: 16252746
7 Xu J, Zhang X, Dong J, Liu D, Huang D. High-speed all-optical differentiator based on a semiconductor optical amplifier and an optical filter. Optics Letters, 2007, 32(13): 1872–1874
https://doi.org/10.1364/OL.32.001872 pmid: 17603598
8 Li M, Janner D, Yao J, Pruneri V. Arbitrary-order all-fiber temporal differentiator based on a fiber Bragg grating: design and experimental demonstration. Optics Express, 2009, 17(22): 19798–19807
https://doi.org/10.1364/OE.17.019798 pmid: 19997201
9 Park Y, Azaña J, Slavík R. Ultrafast all-optical first- and higher-order differentiators based on interferometers. Optics Letters, 2007, 32(6): 710–712
https://doi.org/10.1364/OL.32.000710 pmid: 17308610
10 Li Z, Wu C. All-optical differentiator and high-speed pulse generation based on cross-polarization modulation in a semiconductor optical amplifier. Optics Letters, 2009, 34(6): 830–832
https://doi.org/10.1364/OL.34.000830 pmid: 19282947
11 Hu Y, Zhang L, Xiao X, Li Z, Li Y, Chu T, Su Y, Yu Y, Yu J. An ultra-high-speed photonic temporal differentiator using cascaded SOI microring resonators. Journal of Optics, 2012, 14(6): 065501
https://doi.org/10.1088/2040-8978/14/6/065501
12 Dong J, Zheng A, Gao D, Liao S, Lei L, Huang D, Zhang X. High-order photonic differentiator employing on-chip cascaded microring resonators. Optics Letters, 2013, 38(5): 628–630
https://doi.org/10.1364/OL.38.000628 pmid: 23455246
13 Dong J, Zheng A, Gao D, Lei L, Huang D, Zhang X. Compact, flexible and versatile photonic differentiator using silicon Mach-Zehnder interferometers. Optics Express, 2013, 21(6): 7014–7024
https://doi.org/10.1364/OE.21.007014 pmid: 23546084
14 Li M, Jeong H S, Azaña J, Ahn T J. 25-terahertz-bandwidth all-optical temporal differentiator. Optics Express, 2012, 20(27): 28273–28280
https://doi.org/10.1364/OE.20.028273 pmid: 23263061
15 Ahn T J, Azaña J. Wavelength-selective directional couplers as ultrafast optical differentiators. Optics Express, 2011, 19(8): 7625–7632
https://doi.org/10.1364/OE.19.007625 pmid: 21503071
16 Cuadrado-Laborde C. All-optical ultrafast fractional differentiator. Optical and Quantum Electronics, 2008, 40(13): 983–990
https://doi.org/10.1007/s11082-009-9282-5
17 Cuadrado-Laborde C, Andrés M V. In-fiber all-optical fractional differentiator. Optics Letters, 2009, 34(6): 833–835
https://doi.org/10.1364/OL.34.000833 pmid: 19282948
18 Cuadrado-Laborde C, Andrés M V. Design of an ultra-broadband all-optical fractional differentiator with a long-period fiber grating. Optical and Quantum Electronics, 2011, 42(9–10): 571–576
https://doi.org/10.1007/s11082-011-9478-3
19 Li M, Shao L Y, Albert J, Yao J P. Continuously tunable photonic fractional temporal differentiator based on a tilted fiber Bragg grating. IEEE Photonics Technology Letters, 2011, 23(4): 251–253
https://doi.org/10.1109/LPT.2010.2098475
20 Shahoei H, Albert J, Yao J P. Tunable fractional order temporal differentiator by optically pumping a tilted fiber Bragg grating. IEEE Photonics Technology Letters, 2012, 24(9): 730–732
https://doi.org/10.1109/LPT.2012.2187331
21 Shahoei H, Xu D X, Schmid J H, Yao J P. Photonic fractional-order differentiator using an SOI microring resonator with an MMI coupler. IEEE Photonics Technology Letters, 2013, 25(15): 1408–1411
https://doi.org/10.1109/LPT.2013.2266252
22 Zheng A, Yang T, Xiao X, Yang Q, Zhang X, Dong J. Tunable fractional-order differentiator using an electrically tuned silicon-on-isolator Mach-Zehnder interferometer. Optics Express, 2014, 22(15): 18232–18237
https://doi.org/10.1364/OE.22.018232 pmid: 25089442
23 Zheng A, Dong J, Zhou L, Xiao X, Yang Q, Zhang X, Chen J. Fractional-order photonic differentiator using an on-chip microring resonator. Optics Letters, 2014, 39(21): 6355–6358
https://doi.org/10.1364/OL.39.006355 pmid: 25361353
24 Jin B, Yuan J, Yu C, Sang X, Wu Q, Li F, Wang K, Yan B, Farrell G, Wai P K A. Tunable fractional-order photonic differentiator based on the inverse Raman scattering in a silicon microring resonator. Optics Express, 2015, 23(9): 11141–11151
https://doi.org/10.1364/OE.23.011141 pmid: 25969210
25 Qiu Y, Xiao X, Luo M, Li C, Yang Q, Yu S. Tunable, narrow line-width silicon micro-ring laser source for coherent optical communications. In: Proceedings of CLEO:QELS_Fundamental Science. San Jose, California: Optical Society of America, 2015, JTh2A.57
26 Yang T, Dong J, Liao S, Huang D, Zhang X. Comparison analysis of optical frequency comb generation with nonlinear effects in highly nonlinear fibers. Optics Express, 2013, 21(7): 8508–8520
https://doi.org/10.1364/OE.21.008508 pmid: 23571940
[1] Yuhe ZHAO, Xu WANG, Dingshan GAO, Jianji DONG, Xinliang ZHANG. On-chip programmable pulse processor employing cascaded MZI-MRR structure[J]. Front. Optoelectron., 2019, 12(2): 148-156.
[2] Saket KAUSHAL, Rui Cheng, Minglei Ma, Ajay Mistry, Maurizio Burla, Lukas Chrostowski, José Azaña. Optical signal processing based on silicon photonics waveguide Bragg gratings: review[J]. Front. Optoelectron., 2018, 11(2): 163-188.
[3] Tong CAO,Xinliang ZHANG. Performance improvement by enhancing the well-barrier hole burning in a quantum well semiconductor optical amplifier[J]. Front. Optoelectron., 2016, 9(3): 353-361.
[4] Xuelin YANG,Weisheng HU. Principle and applications of semiconductor optical amplifiers-based turbo-switches[J]. Front. Optoelectron., 2016, 9(3): 346-352.
[5] Xinliang ZHANG,Zhao WU. Linear optical signal processing with optical filters: a tutorial[J]. Front. Optoelectron., 2016, 9(3): 377-389.
[6] Yunhong DING,Haiyan OU,Jing XU,Meng XIONG,Yi AN,Hao HU,Michael GALILI,Abel Lorences RIESGO,Jorge SEOANE,Kresten YVIND,Leif Katsuo OXENLØWE,Xinliang ZHANG,Dexiu HUANG,Christophe PEUCHERET. Linear all-optical signal processing using silicon micro-ring resonators[J]. Front. Optoelectron., 2016, 9(3): 362-376.
[7] Ming LI,José AZA?A,Ninghua ZHU,Jianping YAO. Recent progresses on optical arbitrary waveform generation[J]. Front. Optoelectron., 2014, 7(3): 359-375.
[8] Claudio PORZI, Giovanni SERAFINO, Sergio PINNA, An NGUYEN, Giampiero CONTESTABILE, Antonella BOGONI. Review on SOA-MZI-based photonic add/drop and switching operations[J]. Front Optoelec, 2013, 6(1): 67-77.
[9] Chaotan SIMA, James C. GATES, Michalis N. ZERVAS, Peter G. R. SMITH. Review of photonic Hilbert transformers[J]. Front Optoelec, 2013, 6(1): 78-88.
[10] Cong YIN, Xiaojun ZHOU, Zhiyao ZHANG, Shenghui SHI, Sixian JIANG, Liu LIU, Tingpeng LUO, Yong LIU. Second-order optical differentiator using mechanically-induced LPFG with a single π-shift[J]. Front Optoelec, 2012, 5(3): 261-265.
[11] Xiaofan ZHAO, Caiyun LOU, Yanming FENG. Optical signal processing based on semiconductor optical amplifier and tunable delay interferometer[J]. Front Optoelec Chin, 2011, 4(3): 308-314.
[12] Enming XU, Peili LI, Fei WANG, Jianfei GUAN. Microwave photonic filters based on optical semiconductor amplifier[J]. Front Optoelec Chin, 2011, 4(3): 270-276.
[13] Xinwan LI, Zehua HONG, Xiaomeng SUN. Photonic nano-device for optical signal processing[J]. Front Optoelec Chin, 2011, 4(3): 254-263.
[14] Yong LIU, Ligong CHEN, Tianxiang XU, Jinglei MAO, Shangjian ZHANG, Yongzhi LIU. All-optical signal processing based on semiconductor optical amplifiers[J]. Front Optoelec Chin, 2011, 4(3): 231-242.
[15] Enming XU, Xinliang ZHANG, Lina ZHOU, Yu ZHANG, Yuan YU, Fei WANG, Dexiu HUANG. All-optical filter for simultaneous implementation of microwave bandpass and notch responses based on semiconductor optical amplifier[J]. Front Optoelec Chin, 2009, 2(4): 403-406.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed