Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2016, Vol. 9 Issue (3) : 518-525    https://doi.org/10.1007/s12200-016-0572-9
REVIEW ARTICLE
Photonic integrated devices for exploiting the orbital angular momentum of light in optical communications
Xinlun CAI1(),Michael STRAIN2,Siyuan YU1,Marc SOREL3
1. State Key Laboratory of Optoelectronic Materials and Technologies and School of Microelectronics, Sun Yatsen University, Guangzhou 510275, China
2. Institute of Photonics, University of Strathclyde, Glasgow G4 0NW, UK
3. School of Engineering, University of Glasgow, Glasgow G12 8LT, UK
 Download: PDF(293 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Emerging applications based on optical beams carrying orbital angular momentum (OAM) will likely require photonic integrated devices and circuits for miniaturization, improved performance and enhanced functionality. This paper reviews the state-of-the art in the field of OAM of light, reports recent developments in silicon integrated OAM emitters, and discusses the applications potentials and challenges in silicon integrated OAM devices which can be used in future OAM based optical communications systems.

Keywords silicon photonics      photonic integrated circuits (PICs)      whispering gallery modes (WGMs)      optical communications     
Corresponding Author(s): Xinlun CAI   
Just Accepted Date: 03 August 2016   Online First Date: 14 September 2016    Issue Date: 28 September 2016
 Cite this article:   
Xinlun CAI,Michael STRAIN,Siyuan YU, et al. Photonic integrated devices for exploiting the orbital angular momentum of light in optical communications[J]. Front. Optoelectron., 2016, 9(3): 518-525.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-016-0572-9
https://academic.hep.com.cn/foe/EN/Y2016/V9/I3/518
Fig.1  (a) Integrated OAM emitter device; (b) measured radiation spectrum for a device, near field intensity distributions of the radiated beams, and measured and simulated interference patterns with left-hand circularly polarized (LHCP) and right-hand circularly polarized (RHCP) reference beams
Fig.2  Integrated OAM emitter arrays
Fig.3  Tunable integrated OAM devices
Fig.4  Dynamic characterization of the tunable integrated OAM devices. Measured optical signal for (a) on–off keying and (b) switching between l = -1 and l = + 1
Fig.5  (a) Device for manipulating the OAM superposition states, consisting of an OAM emitter, a 3 dB coupler and a phase shifter; (b) far field images of various generated OAM superposition states
Fig.6  Schematic diagram of the OAM mode purity measurement
Fig.7  Mode purity measurement results for l = -10. H is the order of the pattern on the SLM (number of phase dislocations on the Y-branch hologram)
Fig.8  Sketch of integrated OAM (de-)multiplexer OAM. (a) Ω-shaped device; (b) concentric ring devices
1 Beth R A. Mechanical detection and measurement of the angular momentum of light. Physical Review, 1936, 50(2): 115–125
https://doi.org/10.1103/PhysRev.50.115
2 Friese M E J, Nieminen T A, Heckenberg N R, Rubinsztein-Dunlop H. Optical alignment and spinning of laser-trapped microscopic particles. Nature, 1998, 394(6691): 348–350 doi:10.1038/28566
3 Humblet J. Sur le moment d’impulsion d’une onde electromagntique. Physica A, 1943, 10(7): 585–603
4 Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Physical Review A., 1992, 45(11): 8185–8189
https://doi.org/10.1103/PhysRevA.45.8185 pmid: 9906912
5 Beijersbergen M W, Coerwinkel R P C, Kristensen M, Woerdman J P. Helical-wavefront laser beams produced with a spiral phase plate. Optics Communications, 1994, 112(5–6): 321–327
https://doi.org/10.1016/0030-4018(94)90638-6
6 Bazhenov V Y, Vasnetsov M V, Soskin M S. Laser-beams with screw dislocations in their wavefronts. JETP Letters, 1990, 52(8): 429–431
7 Oemrawsingh S S R, van Houwelingen J A W, Eliel E R, Woerdman J P, Verstegen E J, Kloosterboer J G, ’t Hooft G W. Production and characterization of spiral phase plates for optical wavelengths. Applied Optics, 2004, 43(3): 688–694
https://doi.org/10.1364/AO.43.000688 pmid: 14765932
8 He H, Friese M E J, Heckenberg N R, Rubinsztein-Dunlop H. Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. Physical Review Letters, 1995, 75(5): 826–829
https://doi.org/10.1103/PhysRevLett.75.826 pmid: 10060128
9 O’Neil A T, MacVicar I, Allen L, Padgett M J. Intrinsic and extrinsic nature of the orbital angular momentum of a light beam. Physical Review Letters, 2002, 88(5): 053601
https://doi.org/10.1103/PhysRevLett.88.053601 pmid: 11863722
10 Paterson L, MacDonald M P, Arlt J, Sibbett W, Bryant P E, Dholakia K. Controlled rotation of optically trapped microscopic particles. Science, 2001, 292(5518): 912–914
https://doi.org/10.1126/science.1058591 pmid: 11340200
11 Gibson G, Courtial J, Padgett M, Vasnetsov M, Pas’ko V, Barnett S, Franke-Arnold S. Free-space information transfer using light beams carrying orbital angular momentum. Optics Express, 2004, 12(22): 5448–5456
https://doi.org/10.1364/OPEX.12.005448 pmid: 19484105
12 Paterson C. Atmospheric turbulence and orbital angular momentum of single photons for optical communication. Physical Review Letters, 2005, 94(15): 153901–153904
https://doi.org/10.1103/PhysRevLett.94.153901 pmid: 15904145
13 Marrucci L, Manzo C, Paparo D. Pancharatnam-Berry phase optical elements for wavefront shaping in the visible domain: switchable helical modes generation. Applied Physics Letters, 2006, 88(22): 221102
https://doi.org/10.1063/1.2207993
14 Gbur G, Tyson R K. Vortex beam propagation through atmospheric turbulence and topological charge conservation. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2008, 25(1): 225–230
https://doi.org/10.1364/JOSAA.25.000225 pmid: 18157230
15 McGloin D, Simpson N B, Padgett M J. Transfer of orbital angular momentum from a stressed fiber-optic waveguide to a light beam. Applied Optics, 1998, 37(3): 469–472
https://doi.org/10.1364/AO.37.000469 pmid: 18268608
16 Kumar R, Singh Mehta D, Sachdeva A, Garg A, Senthilkumaran P, Shakher C. Generation and detection of optical vortices using all fiber-optic system. Optics Communications, 2008, 281(13): 3414–3420
https://doi.org/10.1016/j.optcom.2008.03.025
17 Barreiro J T, Wei T C, Kwiat P G. Beating the channel capacity limit for linear photonic superdense coding. Nature Physics, 2008, 4(4): 282–286
https://doi.org/10.1038/nphys919
18 Mair A, Vaziri A, Weihs G, Zeilinger A. Entanglement of the orbital angular momentum states of photons. Nature, 2001, 412(6844): 313–316
https://doi.org/10.1038/35085529 pmid: 11460157
19 Molina-Terriza G, Torres J P, Torner L. Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum. Physical Review Letters, 2002, 88(1): 013601 doi:10.1103/PhysRevLett.88.013601
pmid: 11800943
20 Vaziri A, Weihs G, Zeilinger A. Experimental two-photon, three-dimensional entanglement for quantum communication. Physical Review Letters, 2002, 89(24): 240401
https://doi.org/10.1103/PhysRevLett.89.240401 pmid: 12484932
21 Leach J, Padgett M J, Barnett S M, Franke-Arnold S, Courtial J. Measuring the orbital angular momentum of a single photon. Physical Review Letters, 2002, 88(25 Pt 1): 257901
https://doi.org/10.1103/PhysRevLett.88.257901 pmid: 12097130
22 Barreiro J T, Langford N K, Peters N A, Kwiat P G. Generation of hyperentangled photon pairs. Physical Review Letters, 2005, 95(26): 260501
https://doi.org/10.1103/PhysRevLett.95.260501 pmid: 16486324
23 Stütz M, Gröblacher S, Jennewein T, Zeilinger A. How to create and detect N-dimensional entangled photons with an active phase hologram. Applied Physics Letters, 2007, 90(26): 261114
https://doi.org/10.1063/1.2752728
24 Nagali E, Sciarrino F, De Martini F, Marrucci L, Piccirillo B, Karimi E, Santamato E. Quantum information transfer from spin to orbital angular momentum of photons. Physical Review Letters, 2009, 103(1): 013601
https://doi.org/10.1103/PhysRevLett.103.013601 pmid: 19659145
25 Nagali E, Sciarrino F, De Martini F, Piccirillo B, Karimi E, Marrucci L, Santamato E. Polarization control of single photon quantum orbital angular momentum states. Optics Express, 2009, 17(21): 18745–18759
https://doi.org/10.1364/OE.17.018745 pmid: 20372607
26 Nagali E, Sansoni L, Sciarrino F, De Martini F, Marrucci L, Piccirillo B, Karimi E, Santamato E. Optimal quantum cloning of orbital angular momentum photon qubits through Hong-Ou-Mandel coalescence. Nature Photonics, 2009, 3(12): 720–723
https://doi.org/10.1038/nphoton.2009.214
27 Biener G, Niv A, Kleiner V, Hasman E. Formation of helical beams by use of Pancharatnam-Berry phase optical elements. Optics Letters, 2002, 27(21): 1875–1877
https://doi.org/10.1364/OL.27.001875 pmid: 18033387
28 Bomzon Z, Biener G, Kleiner V, Hasman E. Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings. Optics Letters, 2002, 27(13): 1141–1143
https://doi.org/10.1364/OL.27.001141 pmid: 18026387
29 Marrucci L, Manzo C, Paparo D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Physical Review Letters, 2006, 96(16): 163905
https://doi.org/10.1103/PhysRevLett.96.163905 pmid: 16712234
30 Biener G, Niv A, Kleiner V, Hasman E. Formation of helical beams by use of Pancharatnam-Berry phase optical elements. Optics Letters, 2002, 27(21): 1875–1877
https://doi.org/10.1364/OL.27.001875 pmid: 18033387
31 Bomzon Z, Kleiner V, Hasman E. Pancharatnam—Berry phase in space-variant polarization-state manipulations with subwavelength gratings. Optics Letters, 2001, 26(18): 1424–1426
https://doi.org/10.1364/OL.26.001424 pmid: 18049626
32 Niv A, Biener G, Kleiner V, Hasman E. Manipulation of the Pancharatnam phase in vectorial vortices. Optics Express, 2006, 14(10): 4208–4220
https://doi.org/10.1364/OE.14.004208 pmid: 19516574
33 Moreno I, Davis J A, Ruiz I, Cottrell D M. Decomposition of radially and azimuthally polarized beams using a circular-polarization and vortex-sensing diffraction grating. Optics Express, 2010, 18(7): 7173–7183
https://doi.org/10.1364/OE.18.007173 pmid: 20389738
34 Fontaine N K, Doerr C R, Buhl L. Efficient multiplexing and demultiplexing of free-space orbital angular momentum using photonic integrated circuits. In: Proceedings of Optical Fiber Communication Conference, 2012, paper OTu1l.2
35 Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y, Yue Y, Dolinar S, Tur M, Willner A E. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nature Photonics, 2012, 6(7): 488–496
https://doi.org/10.1038/nphoton.2012.138
36 Bozinovic N, Yue Y, Ren Y, Tur M, Kristensen P, Huang H, Willner A E, Ramachandran S. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science, 2013, 340(6140): 1545–1548
https://doi.org/10.1126/science.1237861 pmid: 23812709
37 Su T, Scott R P, Djordjevic S S, Fontaine N K, Geisler D J, Cai X, Yoo S J. Demonstration of free space coherent optical communication using integrated silicon photonic orbital angular momentum devices. Optics Express, 2012, 20(9): 9396–9402
https://doi.org/10.1364/OE.20.009396 pmid: 22535028
38 Cai X, Wang J, Strain M J, Johnson-Morris B, Zhu J, Sorel M, O’Brien J L, Thompson M G, Yu S. Integrated compact optical vortex beam emitters. Science, 2012, 338(6105): 363–366
https://doi.org/10.1126/science.1226528 pmid: 23087243
39 Matsko A B, Savchenkov A A, Strekalov D, Maleki L. Whispering gallery resonators for studying orbital angular momentum of a photon. Physical Review Letters, 2005, 95(14): 143904
https://doi.org/10.1103/PhysRevLett.95.143904 pmid: 16241656
40 Cai X, Huang D, Zhang X. Numerical analysis of polarization splitter based on vertically coupled microring resonator. Optics Express, 2006, 14(23): 11304–11311
https://doi.org/10.1364/OE.14.011304 pmid: 19529546
41 Yue Y, Huang H, Ahmed N, Yan Y, Ren Y, Xie G, Rogawski D, Tur M, Willner A E. Reconfigurable switching of orbital-angular-momentum-based free-space data channels. Optics Letters, 2013, 38(23): 5118–5121
https://doi.org/10.1364/OL.38.005118 pmid: 24281524
42 Richardson D J, Fini J M, Nelson L E. Space-division multiplexing in optical fibres. Nature Photonics, 2013, 7(5): 354–362
https://doi.org/10.1038/nphoton.2013.94
43 Strain M J, Cai X, Wang J, Zhu J, Phillips D B, Chen L, Lopez-Garcia M, O’Brien J L, Thompson M G, Sorel M, Yu S. Fast electrical switching of orbital angular momentum modes using ultra-compact integrated vortex emitters. Nature Communications, 2014, 5: 4856
https://doi.org/10.1038/ncomms5856 pmid: 25229882
44 Li H, Strain M J, Meriggi L, Chen L, Zhu J, Cicek K, Wang J, Cai X, Sorel M, Thompson M G, Yu S. Pattern manipulation via on-chip phase modulation between orbital angular momentum beams. Applied Physics Letters, 2015, 107(5): 051102
https://doi.org/10.1063/1.4927758
[1] Long ZHU, Jian WANG. A review of multiple optical vortices generation: methods and applications[J]. Front. Optoelectron., 2019, 12(1): 52-68.
[2] Saket KAUSHAL, Rui Cheng, Minglei Ma, Ajay Mistry, Maurizio Burla, Lukas Chrostowski, José Azaña. Optical signal processing based on silicon photonics waveguide Bragg gratings: review[J]. Front. Optoelectron., 2018, 11(2): 163-188.
[3] Yong ZHANG, Yu HE, Qingming ZHU, Xinhong JIANG, Xuhan Guo, Ciyuan QIU, Yikai SU. On-chip silicon polarization and mode handling devices[J]. Front. Optoelectron., 2018, 11(1): 77-91.
[4] Mengying HE,Shasha LIAO,Li LIU,Jianji DONG. Theoretical analysis for optomechanical all-optical transistor[J]. Front. Optoelectron., 2016, 9(3): 406-411.
[5] Junxiang KE,Lilin YI,Tongtong HOU,Weisheng HU. Key technologies in chaotic optical communications[J]. Front. Optoelectron., 2016, 9(3): 508-517.
[6] Daoxin DAI,Shipeng WANG. Asymmetric directional couplers based on silicon nanophotonic waveguides and applications[J]. Front. Optoelectron., 2016, 9(3): 450-465.
[7] Swapnajit CHAKRAVARTY,Xiangning CHEN,Naimei TANG,Wei-Cheng LAI,Yi ZOU,Hai YAN,Ray T. CHEN. Review of design principles of 2D photonic crystal microcavity biosensors in silicon and their applications[J]. Front. Optoelectron., 2016, 9(2): 206-224.
[8] Charles CAER,Xavier LE ROUX,Samuel SERNA,Weiwei ZHANG,Laurent VIVIEN,Eric CASSAN. Large group-index bandwidth product empty core slow light photonic crystal waveguides for hybrid silicon photonics[J]. Front. Optoelectron., 2014, 7(3): 376-384.
[9] Zhiyong LI, Liang ZHOU, Xi XIAO, Tao CHU, Yude YU, Jinzhong YU. Improved extinction ratio of Mach-Zehnder based optical modulators on CMOS platform[J]. Front Optoelec, 2012, 5(1): 90-93.
[10] Guangzhao RAN, Hongqiang LI, Chong WANG. On-chip silicon light source: from photonics to plasmonics[J]. Front Optoelec, 2012, 5(1): 3-6.
[11] Eric CASSAN, Xavier LE ROUX, Charles CAER, Ran HAO, Damien BERNIER, Delphine MARRIS-MORINI, Laurent VIVIEN. Silicon slow light photonic crystals structures: present achievements and future trends[J]. Front Optoelec Chin, 2011, 4(3): 243-253.
[12] Rujian LIN, Meiwei ZHU, Zheyun ZHOU, Haoshuo CHEN, Jiajun YE. New progress of mm-wave radio-over-fiber system based on OFM[J]. Front Optoelec Chin, 2009, 2(4): 368-378.
[13] WANG Jian, SUN Junqiang, SUN Qizhen, ZHANG Weiwei, HU Zhefeng, ZHANG Xinliang, HUANG Dexiu. Experimental realization of 40 Gbit/s single-to-single and single-to-dual channel wavelength conversions in LiNbO waveguides with two-pump configuration[J]. Front. Optoelectron., 2008, 1(1-2): 3-13.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed