Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2016, Vol. 9 Issue (1) : 81-86    https://doi.org/10.1007/s12200-016-0573-8
RESEARCH ARTICLE
Challenges in the ambient Raman spectroscopy characterization of methylammonium lead triiodide perovskite thin films
Yuanyuan ZHOU(),Hector F. GARCES,Nitin P. PADTURE()
School of Engineering, Brown University, Providence RI 02912, USA
 Download: PDF(1639 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The importance of methylammonium lead triiodide (CH3NH3PbI3 or MAPbI3) organic-inorganic hybrid perovskites has shot up dramatically since their use in highly efficient thin-film perovskite solar cells (PSCs). However, the basic structural characterization of these fascinating materials remains sparse. In particular, Raman spectroscopy, which is a powerful vibrational spectroscopy characterization tool and complements other characterization methods, of MAPbI3 under ambient conditions is plagued with difficulties. Here, a systematic ambient Raman spectroscopy characterization study of MAPbI3 thin films is conducted under different conditions (excitation laser wavelength, integration time, filter characteristic). The results from this study help elucidate the possible sources of artifacts in the Raman spectra, and raise the awareness of the challenges in the ambient Raman spectroscopy of MAPbI3 perovskites. Approaches to overcome these challenges are suggested.

Keywords perovskite      solar cells      Raman spectroscopy      laser-degradation     
Corresponding Author(s): Yuanyuan ZHOU,Nitin P. PADTURE   
Just Accepted Date: 31 December 2015   Online First Date: 20 January 2016    Issue Date: 18 March 2016
 Cite this article:   
Yuanyuan ZHOU,Hector F. GARCES,Nitin P. PADTURE. Challenges in the ambient Raman spectroscopy characterization of methylammonium lead triiodide perovskite thin films[J]. Front. Optoelectron., 2016, 9(1): 81-86.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-016-0573-8
https://academic.hep.com.cn/foe/EN/Y2016/V9/I1/81
Fig.1  Crystal structure of MAPbI3 perovskite: (a) ?100? view and (b) ?001? view
Fig.2  Characterization of MAPbI3 perovskite thin films deposited on Al substrate: (a) indexed XRD pattern, (b) top-view SEM image, and (c) cross-sectional SEM image
Fig.3  Raman spectra (left) of MAPbI3 thin films on Al-coated quartz substrates at short (0.2 s, 10 accumulations) and long (2.0 s, 10 accumulations) integration times (with regular notch filter), and corresponding before and after optical micrographs (right) of the sample: (a) 532 nm laser excitation, (b) 633 nm laser excitation
Fig.4  Raman spectra (left) of MAPbI3 thin film on Al-coated quartz substrate at short integration time (0.2 s, 10 accumulations), with low-wavelength holographic notch filter (532 nm laser excitation)
Fig.5  Fig. 5 Raman spectra of (a) PbI2 and (b) MAI thin films on Al substrates: short integration time (0.2 s, 10 accumulations); 532 nm laser excitation; with low-wavelength holographic notch filter. Dashed lines mark the centers of the PbI2 bands
1 Weber D. CH3NH3SnBrxI3-x (x=0–3), a Sn(II)-system with cubic perovskite structure. Zeitschrift für Naturforschung B, 1978, 33(8): 862–865
https://doi.org/10.1515/znb-1978-0809
2 Weber D. CH3NH3PbX3, a Pb(II)-system with cubic perovskite structure. Zeitschrift für Naturforschung B, 1978, 33(12): 1443–1445
https://doi.org/10.1515/znb-1978-1214
3 Mitzi D B. Synthesis, structure, and properties of organic-inorganic perovskites and related materials. In: Progress in Inorganic Chemistry. Karlin K D, ed. John Wiley & Sons: New York, 1999, 48: 1–121  
https://doi.org/10.1002/9780470166499.ch1
4 Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 2009, 131(17): 6050–6051
https://doi.org/10.1021/ja809598r pmid: 19366264
5 Im J H, Lee C R, Lee J W, Park S W, Park N G. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 2011, 3(10): 4088–4093
https://doi.org/10.1039/c1nr10867k pmid: 21897986
6 Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Grätzel M, Park N G. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific Reports, 2012, 2: 591
https://doi.org/10.1038/srep00591 pmid: 22912919
7 Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 2012, 338(6107): 643–647
https://doi.org/10.1126/science.1228604 pmid: 23042296
8 Liu M, Johnston M B, Snaith H J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 2013, 501(7467): 395–398
https://doi.org/10.1038/nature12509 pmid: 24025775
9 Heo J H, Im S H, Noh J H, Mandal T N, Lim C S, Chang J A, Lee Y H, Kim H J, Sarkar A, Nazeeruddin M K, Grätzel M, Seok S I. Efficient inorganic-organic hybrid heterojunction solar cells containing perokskite compund and polymeric hole conductors. Nature Photonics, 2013, 7(6): 486–491
https://doi.org/10.1038/nphoton.2013.80
10 Snaith H J. Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. Journal of Physical Chemistry Letters, 2013, 4(21): 3623–3630
https://doi.org/10.1021/jz4020162
11 Grätzel M. The light and shade of perovskite solar cells. Nature Materials, 2014, 13(9): 838–842
https://doi.org/10.1038/nmat4065 pmid: 25141800
12 Green M A, Ho-Baillie A, Snaith H J. The emergance of perovskite solar cells. Nature Photonics, 2014, 8(7): 506–514
https://doi.org/10.1038/nphoton.2014.134
13 Jung H S, Park N G. Perovskite solar cells: from materials to devices. Small, 2015, 11(1): 10–25
https://doi.org/10.1002/smll.201402767 pmid: 25358818
14 Xing G, Mathews N, Lim S S, Yantara N, Liu X, Sabba D, Grätzel M, Mhaisalkar S, Sum T C. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nature Materials, 2014, 13(5): 476–480
https://doi.org/10.1038/nmat3911 pmid: 24633346
15 Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L, Huang J. Solar cells. Electron-hole diffusion lengths>175 mm in solution-grown CH3NH3PbI3 single crystals. Science, 2015, 347(6225): 967–970
https://doi.org/10.1126/science.aaa5760 pmid: 25636799
16 Yakunin S, Sytnyk M, Kriegner D, Shrestha S, Richter M, Matt G J, Azimi H, Brabec C, Stangl J, Kovalenko M V, Heiss W. Detection of X-ray photos by solution-processed lead halide perovskites. Nature Photonics, 2015, 9(7): 444–449
https://doi.org/10.1038/nphoton.2015.82
17 Cho H, Jeong S H, Park M H, Kim Y H, Wolf C, Lee C L, Heo J H, Sadhanala A, Myoung N S, Yoo S, Im S H, Friend R H, Lee T W. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science, 2015, 350(6265): 1222–1225
https://doi.org/10.1126/science.aad1818
18 Zhao Y, Zhu K. Solution-chemistry engineering toward high-efficiency perovskite solar cells. Journal of Physical Chemistry Letters, 2014, 5(23): 4175–4186
https://doi.org/10.1021/jz501983v pmid: 26278951
19 Zhou Y, Game O S, Pang S, Padture N P. Microstructures of organometal trihalide perovskites for solar cells: their evolution from solutions and characterization. Journal of Physical Chemistry Letters, 2015, 6(23): 4827–4839
https://doi.org/10.1021/acs.jpclett.5b01843 pmid: 26560696
20 Zhou Z, Wang Z, Zhou Y, Pang S, Wang D, Xu H, Liu Z, Padture N P, Cui G. Methylamine-Gas-induced defect-healing behavior of CH3NH3PbI3 thin films for perovskite solar cells. Angewandte Chemie International Edition, 2015, 54(33): 9705–9709
https://doi.org/10.1002/anie.201504379
21 Quarti C, Grancini G, Mosconi E, Bruno P, Ball J M, Lee M M, Snaith H J, Petrozza A, Angelis F D. The Raman spectrum of the CH3NH3PbI3 hybrid perovskite: interplay of theory and experiment. Journal of Physical Chemistry Letters, 2014, 5(2): 279–284
https://doi.org/10.1021/jz402589q pmid: 26270700
22 Grancini G, Marras S, Prato M, Giannini C, Quarti C, De Angelis F, De Bastiani M, Eperon G E, Snaith H J, Manna L, Petrozza A. The impact of the crystallization process on the structural and optical properties of hybrid perovskite films for photovoltaics. Journal of Physical Chemistry Letters, 2014, 5(21): 3836–3842
https://doi.org/10.1021/jz501877h pmid: 26278757
23 Brivio F, Frost J M, Skelton J M, Jackson A J, Weber O J, Weller M T, Goni A R, Leguy A M A, Barnes P F F, Walsh A. Lattice dynamics and vibrational spectra of the orthorhombic, tetragonal, and cubic phases of methylammonium lead iodide. Physical Review B: Condensed Matter and Materials Physics, 2015, 92(14): 144308
https://doi.org/10.1103/PhysRevB.92.144308
24 Park B W, Jain S M, Zhang X, Hagfeldt A, Boschloo G, Edvinsson T. Resonance Raman and excitation energy dependent charge transfer mechanism in halide-substituted hybrid perovskite solar cells. ACS Nano, 2015, 9(2): 2088–2101
https://doi.org/10.1021/nn507345e pmid: 25668059
25 Ledinský M, Löper P, Niesen B, Holovský J, Moon S J, Yum J H, De Wolf S, Fejfar A, Ballif C. Raman spectroscopy of organic-inorganic halide perovskites. Journal of Physical Chemistry Letters, 2015, 6(3): 401–406
https://doi.org/10.1021/jz5026323 pmid: 26261955
26 Vandenabeele P. Practical Raman Spectroscopy: An Introduction. Wiley: New York, 2013
27 Stoumpos C C, Malliakas C D, Kanatzidis M G. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorganic Chemistry, 2013, 52(15): 9019–9038
https://doi.org/10.1021/ic401215x pmid: 23834108
28 Kutes Y, Ye L, Zhou Y, Pang S, Huey B D, Padture N P. Direct observation of ferroelectric domains in solution-processed CH3NH3PbI3 perovskite thin films. Journal of Physical Chemistry Letters, 2014, 5(19): 3335–3339
https://doi.org/10.1021/jz501697b pmid: 26278441
29 Kim H S, Im S H, Park N G. Oganolead halide perovskite: new horizons in solar cell research. Journal of Physical Chemistry C, 2014, 118(11): 5615–5625
https://doi.org/10.1021/jp409025w
30 Woodward P M. Octahedral tilting in perovskites: I. geometrical considerations. Acta Crystallographica Section B, Structural Science, 1997, 53(1): 32–43
https://doi.org/10.1107/S0108768196010713
31 Matsuishi K, Ishihara T, Onari S, Chang Y H, Park C H. Optical properties and structural phase transitions of lead-halide based inorganic-organic 3D and 2D perovskite semiconductors under high pressure. Physics Status Solidi, 2004, 241(14): 3328–3333
32 Maalej A, Abid Y, Kallel A, Daoud A, Lautie A, Romain F. Phase transition and crystal synamics in the cubic perovskite CH3NH3PbCl3. Solid State Communications, 1997, 103(5): 279–284
https://doi.org/10.1016/S0038-1098(97)00199-3
33 Zhou Y, Yang M, Wu W, Vasiliev A L, Zhu K, Padture N P. Room-temperature crystallization of hybrid-perovskite thin films via solvent–solvent extraction for high-performance solar cells. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3(15): 8178–8184
https://doi.org/10.1039/C5TA00477B
34 Yang M, Zhou Y, Zeng Y, Jiang C S, Padture N P, Zhu K. Square‐centimeter solution‐processed planar CH3NH3PbI3 perovskite solar cells with efficiency exceeding 15%. Advanced Materials, 2015, 27(41): 6363–6370
https://doi.org/10.1002/adma.201502586
35 Hu H, Wang D, Zhou Y, Zhang J, Lv S, Pang S, Chen X, Liu Z, Padture N P, Cui G. Vapour-based processing of hole-conductor-free CH3NH3PbI3 perovskite/C60 fullerene planar solar cells. RSC Advances, 2014, 4(55): 28964–28967
https://doi.org/10.1039/C4RA03820G
36 Pisoni A, Jaćimović J, Barišić O S, Spina M, Gaál R, Forró L, Horváth E. Ultra-low thermal conductivity in organic–inorganic hybrid perovskite CH3NH3PbI3. Journal of Physical Chemistry Letters, 2014, 5(14): 2488–2492
https://doi.org/10.1021/jz5012109 pmid: 26277821
37 Khilji M Y, Sherman W F, Wilkinson G R. Raman study of three polytypes of PbI2. Journal of Raman Spectroscopy, 1982, 13(2): 127–133
https://doi.org/10.1002/jrs.1250130206
38 Baleva M, Tuncheva V. Optical characterization of lead monoxide films grown by laser-assisted deposition. Journal of Solid State Chemistry, 1994, 110(1): 36–42
https://doi.org/10.1006/jssc.1994.1132
[1] Yan ZHU, Yining MU, Fanqi TANG, Peng DU, Hang REN. A corona modulation device structure and mechanism based on perovskite quantum dots random laser pumped using an electron beam[J]. Front. Optoelectron., 2020, 13(3): 291-302.
[2] Chuanzhong YAN, Kebin LIN, Jianxun LU, Zhanhua WEI. Composition engineering to obtain efficient hybrid perovskite light-emitting diodes[J]. Front. Optoelectron., 2020, 13(3): 282-290.
[3] Hangkai YING, Yifan LIU, Yuxi DOU, Jibo ZHANG, Zhenli WU, Qi ZHANG, Yi-Bing CHENG, Jie ZHONG. Surfactant-assisted doctor-blading-printed FAPbBr3 films for efficient semitransparent perovskite solar cells[J]. Front. Optoelectron., 2020, 13(3): 272-281.
[4] Shaiqiang MU, Qiufeng YE, Xingwang ZHANG, Shihua HUANG, Jingbi YOU. Polymer hole-transport material improving thermal stability of inorganic perovskite solar cells[J]. Front. Optoelectron., 2020, 13(3): 265-271.
[5] Shuangquan JIANG, Yusong SHENG, Yue HU, Yaoguang RONG, Anyi MEI, Hongwei HAN. Influence of precursor concentration on printable mesoscopic perovskite solar cells[J]. Front. Optoelectron., 2020, 13(3): 256-264.
[6] Peipei DU, Liang GAO, Jiang TANG. Focus on performance of perovskite light-emitting diodes[J]. Front. Optoelectron., 2020, 13(3): 235-245.
[7] Junze LI, Haizhen WANG, Dehui LI. Self-trapped excitons in two-dimensional perovskites[J]. Front. Optoelectron., 2020, 13(3): 225-234.
[8] Rashad F. KAHWAGI, Sean T. THORNTON, Ben SMITH, Ghada I. KOLEILAT. Dimensionality engineering of metal halide perovskites[J]. Front. Optoelectron., 2020, 13(3): 196-224.
[9] Jinghui LI, Zhifang TAN, Manchen HU, Chao CHEN, Jiajun LUO, Shunran LI, Liang GAO, Zewen XIAO, Guangda NIU, Jiang TANG. Antimony doped Cs2SnCl6 with bright and stable emission[J]. Front. Optoelectron., 2019, 12(4): 352-364.
[10] Zhining WAN, Mi XU, Zhengyang FU, Da LI, Anyi MEI, Yue HU, Yaoguang RONG, Hongwei HAN. Screen printing process control for coating high throughput titanium dioxide films toward printable mesoscopic perovskite solar cells[J]. Front. Optoelectron., 2019, 12(4): 344-351.
[11] Ru GE, Fei QIN, Lin HU, Sixing XIONG, Yinhua ZHOU. High fill factor over 82% enabled by a biguanide doping electron transporting layer in planar perovskite solar cells[J]. Front. Optoelectron., 2018, 11(4): 360-366.
[12] Xiaofan ZHANG, Man LIU, Weiqian KONG, Hongbo FAN. Recent advances in solar cells and photo-electrochemical water splitting by scanning electrochemical microscopy[J]. Front. Optoelectron., 2018, 11(4): 333-347.
[13] Tao YUAN, Zhonghuan CAO, Guoli TU. Indium tin oxide-free inverted polymer solar cells with ultrathin metal transparent electrodes[J]. Front. Optoelectron., 2017, 10(4): 402-408.
[14] Bernd KAMPE, Sandra KLOß, Thomas BOCKLITZ, Petra RÖSCH, Jürgen POPP. Recursive feature elimination in Raman spectra with support vector machines[J]. Front. Optoelectron., 2017, 10(3): 273-279.
[15] Yuqin LIAO, Xianyuan JIANG, Wenjia ZHOU, Zhifang SHI, Binghan LI, Qixi MI, Zhijun NING. Hole-transporting layer-free inverted planar mixed lead-tin perovskite-based solar cells[J]. Front. Optoelectron., 2017, 10(2): 103-110.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed