Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2016, Vol. 9 Issue (3) : 390-394    https://doi.org/10.1007/s12200-016-0576-5
RESEARCH ARTICLE
Comparison of wavelength conversion efficiency between silicon waveguide and microring resonator
Meng XIONG1(),Yunhong DING1,Haiyan OU1,Christophe PEUCHERET2,Xinliang ZHANG3
1. Department of Photonics Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
2. FOTON Laboratory, CNRS UMR 6082, ENSSAT, University of Rennes 1, F-22305 Lannion, France
3. Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(226 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Wavelength conversion based on degenerate four-wave mixing (FWM) was demonstrated and compared between silicon nanowire and microring resonator (MRR). 15 dB enhancement of conversion efficiency (CE) with relatively low input pump power (5 mW) was achieved experimentally in an MRR. The impacts of bus waveguide length and propagation loss were theoretically analyzed under the effect of nonlinear loss.

Keywords wavelength conversion      four-wave mixing (FWM)      silicon nanowaire      microring resonator (MRR)     
Corresponding Author(s): Meng XIONG   
Just Accepted Date: 03 August 2016   Online First Date: 07 September 2016    Issue Date: 28 September 2016
 Cite this article:   
Meng XIONG,Yunhong DING,Haiyan OU, et al. Comparison of wavelength conversion efficiency between silicon waveguide and microring resonator[J]. Front. Optoelectron., 2016, 9(3): 390-394.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-016-0576-5
https://academic.hep.com.cn/foe/EN/Y2016/V9/I3/390
Fig.1  Experimental setup for wavelength conversion
Fig.2  Measured (square symbols for MRR and triangles for WG) and simulated (blue curve for MRR and red curve for WG) CE as a function of input pump power
Fig.3  Left axis: CE as a function of pump power for WGs with optimal (solid lines) and fixed (dashed line) lengths and different linear losses. Right axis: optimal WG length as a function of pump power
Fig.4  CEs of WGs of different lengths with and without MRR for different linear loss values. (a) 1dB/cm; (b) 3dB/cm; (c) 5dB/cm
Fig.5  CEs of MRRs (without bus waveguide) and WGs of the same length as the circumference of the MRRs for two different linear losses of 1 and 5 dB/cm
1 Foster M A, Turner A C, Sharping J E, Schmidt B S, Lipson M, Gaeta A L. Broad-band optical parametric gain on a silicon photonic chip. Nature, 2006, 441(7096): 960–963
https://doi.org/10.1038/nature04932、 pmid: 16791190
2 Oxenløwe L K, Ji H, Galili M, Pu M, Hu H, Mulvad H C H, Yvind K, Hvam J M, Clausen A T, Jeppesen P. Silicon photonics for signal processing of Tbit/s serial data signals. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18(2): 996–1005
https://doi.org/10.1109/JSTQE.2011.2140093
3 Turner A C, Foster M A, Gaeta A L, Lipson M. Ultra-low power parametric frequency conversion in a silicon microring resonator. Optics Express, 2008, 16(7): 4881–4887
https://doi.org/10.1364/OE.16.004881 pmid: 18542587
4 Li F, Pelusi M, Xu D X, Ma R, Janz S, Eggleton B J, Moss D J. All-optical wavelength conversion for 10 Gb/s DPSK signals in a silicon ring resonator. Optics Express, 2011, 19(23): 22410–22416 doi:10.1364/OE.19.022410
pmid: 22109117
5 Xiong M, Ding Y, Ou H, Peucheret C, Zhang X. Systematic comparison of FWM conversion efficiency in silicon waveguides and MRRs. In: Proceedings of OptoElectronics and Communications Conference, 2013,TuPM-7
6 Lin Q, Painter O J, Agrawal G P. Nonlinear optical phenomena in silicon waveguides: modeling and applications. Optics Express, 2007, 15(25): 16604–16644 doi:10.1364/OE.15.016604
pmid: 19550949
7 Li Z, Gao S, Liu Q, He S. Modified model for four-wave mixing-based wavelength conversion in silicon micro-ring resonators. Optics Communications, 2011, 284(8): 2215–2221 doi:10.1016/j.optcom.2010.12.080
[1] Michael J. CONNELLY,Lukasz KRZCZANOWICZ,Pascal MOREL,Ammar SHARAIHA,Francois LELARGE,Romain BRENOT,Siddharth JOSHI,Sophie BARBET. 40 Gb/s NRZ-DQPSK data wavelength conversion with amplitude regeneration using four-wave mixing in a quantum dash semiconductor optical amplifier[J]. Front. Optoelectron., 2016, 9(3): 341-345.
[2] Yashar E. MONFARED, A. MOJTAHEDINIA, A. R. MALEKI JAVAN, A. R. MONAJATI KASHANI. Highly nonlinear enhanced-core photonic crystal fiber with low dispersion for wavelength conversion based on four-wave mixing[J]. Front Optoelec, 2013, 6(3): 297-302.
[3] Claudio PORZI, Giovanni SERAFINO, Sergio PINNA, An NGUYEN, Giampiero CONTESTABILE, Antonella BOGONI. Review on SOA-MZI-based photonic add/drop and switching operations[J]. Front Optoelec, 2013, 6(1): 67-77.
[4] Jie BI. Angular feature of conical emission in an isotropic amorphous medium pumped by femtosecond pulses[J]. Front Optoelec Chin, 2011, 4(4): 407-410.
[5] Xiaofan ZHAO, Caiyun LOU, Yanming FENG. Optical signal processing based on semiconductor optical amplifier and tunable delay interferometer[J]. Front Optoelec Chin, 2011, 4(3): 308-314.
[6] Yin ZHANG, Xinliang ZHANG, Xi HUANG, Cheng CHENG. Experimental investigation on slow light via four-wave mixing in semiconductor optical amplifier[J]. Front Optoelec Chin, 2009, 2(3): 259-263.
[7] WANG Jian, SUN Junqiang, SUN Qizhen, ZHANG Weiwei, HU Zhefeng, ZHANG Xinliang, HUANG Dexiu. Experimental realization of 40 Gbit/s single-to-single and single-to-dual channel wavelength conversions in LiNbO waveguides with two-pump configuration[J]. Front. Optoelectron., 2008, 1(1-2): 3-13.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed