Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2016, Vol. 9 Issue (3) : 395-398    https://doi.org/10.1007/s12200-016-0577-4
RESEARCH ARTICLE
Switching dynamics in InP photonic-crystal nanocavity
Yi YU(),Evarist PALUSHANI,Mikkel HEUCK,Leif Katsuo OXENLØWE,Kresten YVIND,Jesper MØRK
Department of Photonics Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
 Download: PDF(202 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, we presented switching dynamic investigations on an InP photonic-crystal (PhC) nanocavity structure using homodyne pump-probe measurements. The measurements were compared with simulations based on temporal nonlinear coupled mode theory and carrier rate equations for the dynamics of the carrier density governing the cavity properties. The results provide insight into the nonlinear optical processes that govern the dynamics of nanocavities.

Keywords all-optical switching      photonic-crystal (PhC)      nanocavity      nonlinear optics     
Corresponding Author(s): Yi YU   
Just Accepted Date: 03 August 2016   Online First Date: 12 September 2016    Issue Date: 28 September 2016
 Cite this article:   
Yi YU,Evarist PALUSHANI,Mikkel HEUCK, et al. Switching dynamics in InP photonic-crystal nanocavity[J]. Front. Optoelectron., 2016, 9(3): 395-398.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-016-0577-4
https://academic.hep.com.cn/foe/EN/Y2016/V9/I3/395
Fig.1  Transmission spectrum of H0 cavity structure in linear case (blue dots) and theoretical fitting using a Lorentzian function (red curve). The inset shows a SEM image of PhC sample. The scale bar corresponds to 2 mm
Fig.2  Input and output pump spectra for different input powers and two polarizations. The probe is absent. (a) The pump is TE-polarized tuned to the cavity resonance; (b) the pump is TE-polarized and is blue detuned by 0.2 nm from the cavity resonance; (c) the pump is TM-polarized and is blue detuned by 0.2 nm from the cavity resonance. The discrete lines located on the spectra is due to modulation
Fig.3  Normalized output spectra for an input pump signal modulated at (a) 10 GHz and (b) 625 MHz, respectively, with different pulse energies. The input pump signal is tuned to the cavity resonance (blue dashed lines). The spectral curves have been smoothed so the discrete tones due to modulation have been removed
Fig.4  Measured (dots) and simulated (lines) probe transmission versus pump-probe delay for different pump energies and two probe locations. The transmission was normalized to one when the probe (~9 ps) preceded the pump (~5−6 ps). The pump wavelength was fixed at 1545 nm. The red and green lines and dots correspond to the switch-on case while the blue line and dot correspond to the switch-off case
1 Tanabe T, Nishiguchi K, Shinya A, Kuramochi E, Inokawa H, Notomi M, Yamada K, Tsuchizawa T, Watanabe T, Fukuda H, Shinojima H, Itabashi S. Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities. Applied Physics Letters, 2007, 90(3): 031115-1–031115-3
https://doi.org/10.1063/1.2431767
2 Husko C, De Rossi A, Combrié S, Tran Q V, Raineri F, Wong C W. Ultrafast all-optical modulation in GaAs photonic crystal cavities. Applied Physics Letters, 2009, 94(2): 021111-1–021111-3
https://doi.org/10.1063/1.3068755
3 Nozaki K, Tanabe T, Shinya A, Matsuo S, Sato T, Taniyama H, Notomi M. Sub-femtojoule all-optical switching using a photonic-crystal nanocavity. Nature Photonics, 2010, 4(7): 477–483
https://doi.org/10.1038/nphoton.2010.89
4 Tanabe T, Notomi M, Mitsugi S, Shinya A, Kuramochi E. Fast bistable all-optical switch and memory on a silicon photonic crystal on-chip. Optics Letters, 2005, 30(19): 2575–2577
https://doi.org/10.1364/OL.30.002575
5 Yu Y, Palushani E, Heuck M, Kuznetsova N, Kristensen P T, Ek S, Vukovic D, Peucheret C, Oxenløwe L K, Combrié S, de Rossi A, Yvind K, Mørk J. Switching characteristics of an InP photonic crystal nanocavity: experiment and theory. Optics Express, 2013, 21(25): 31047–31061
https://doi.org/10.1364/OE.21.031047
6 Yu Y, Heuck M, Ek S, Kuznetsova N, Yvind K, Mørk J. Experimental demonstration of a four-port photonic crystal cross-waveguide structure. Applied Physics Letters, 2012, 101(25): 251113-1–251113-4
https://doi.org/10.1063/1.4772942
7 Joannopoulos J D, Johnson S G, Winn J N, Meade R D. Photonic Crystals: Molding the Flow of Light. Princeton: Princeton University, 2008
8 Heuck M, Combrié S, Lehoucq G, Malaguti S, Bellanca G, Trillo S, Kristensen P T, Mørk J, Reithmaier J P, De Rossi A. Heterodyne pump probe measurements of nonlinear dynamics in an indium phosphide photonic crystal cavity. Applied Physics Letters, 2013, 103(18): 181120-1–181120-4
https://doi.org/10.1063/1.4828355
[1] Kejia WANG, Xinyang GU, Jinsong LIU, Zhengang YANG, Shenglie WANG. Proposal for CEP measurement based on terahertz air photonics[J]. Front. Optoelectron., 2018, 11(4): 407-412.
[2] Eric Y. ZHU, Costantino CORBARI, Alexey V. GLADYSHEV, Peter G. KAZANSKY, Li QIAN. Franson interferometry with a single pulse[J]. Front. Optoelectron., 2018, 11(2): 148-154.
[3] Christian REIMER, Yanbing ZHANG, Piotr ROZTOCKI, Stefania SCIARA, Luis Romero CORTÉS, Mehedi ISLAM, Bennet FISCHER, Benjamin WETZEL, Alfonso Carmelo CINO, Sai Tak CHU, Brent LITTLE, David MOSS, Lucia CASPANI, José AZAÑA, Michael KUES, Roberto MORANDOTTI. On-chip frequency combs and telecommunications signal processing meet quantum optics[J]. Front. Optoelectron., 2018, 11(2): 134-147.
[4] Tong CAO,Xinliang ZHANG. Performance improvement by enhancing the well-barrier hole burning in a quantum well semiconductor optical amplifier[J]. Front. Optoelectron., 2016, 9(3): 353-361.
[5] Xian ZHU, Xinben ZHANG, Jinggang PENG, Xiang CHEN, Jinyan LI. Photonic crystal fibers for supercontinuumβgeneration[J]. Front Optoelec Chin, 2011, 4(4): 415-419.
[6] Yujie ZHOU, Liqun FENG, Qian HU, Junqiang SUN. Mode overlap analyses of propagated waves in direct bonded PPMgLN ridge waveguide[J]. Front Optoelec Chin, 2011, 4(3): 343-347.
[7] LIU Bo, ZHANG Ruobing, LIU Huagang, MA Jing, ZHU Chen, WANG Qingyue. Investigation of spectral bandwidth of BBO-I phase matching non-collinear optical parametric amplification from visible to near-infrared[J]. Front. Optoelectron., 2008, 1(1-2): 101-108.
[8] Ren Tiexiong, Yu Jian, Sang Mei, Fu Weijia, Ni Wenjun, Kang Yuzhuo, Li Shichen, Hu Yonglan, Shi Ruize. Real-time monitoring in fabrication of PPKTP crystals utilizing electro-optical effect[J]. Front. Optoelectron., 2008, 1(1-2): 151-155.
[9] WANG Jian, SUN Junqiang, SUN Qizhen, ZHANG Weiwei, HU Zhefeng, ZHANG Xinliang, HUANG Dexiu. Experimental realization of 40 Gbit/s single-to-single and single-to-dual channel wavelength conversions in LiNbO waveguides with two-pump configuration[J]. Front. Optoelectron., 2008, 1(1-2): 3-13.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed