Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2016, Vol. 9 Issue (3) : 420-427    https://doi.org/10.1007/s12200-016-0581-8
REVIEW ARTICLE
Femtosecond laser processing of microcavity lasers
Xuepeng ZHAN, Huailiang XU(), Hongbo SUN()
State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
 Download: PDF(1026 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, we reviewed the fabrications of functional microcavity lasers in soft materials such as polymer and protein by femtosecond laser processing. High-quality (Q) microdisks with a laser dye (Rhodamine B, RhB) acting as gain medium were fabricated that produced whispering-gallery-mode (WGM) lasing output. We also obtained unidirectional lasing output with a low lasing threshold in a deformed spiral microcavity at room temperature. Photonic-molecule (PM) microlasers were prepared to investigate the interaction and coupling effects of different cavities, and it was found that the distance between the two disks plays an important role in the lasing behaviors. Single-mode lasing was realized from a stacked PM microlaser through Vernier effect. Furthermore we adopted the biocompatible materials, RhB-doped proteins as a host material and fabricated a three-dimensional (3D) WGM microlaser, which operated well both in air and aqueous environment. The sensing of the protein microlasers to Na2SO4 concentration was investigated. Our results of fabricating high-Q microlasers with different materials reveal the potential applications of femtosecond laser processing in the areas of integrated optoelectronic and ultrahigh sensitive bio-sensing devices.

Keywords femtosecond laser processing      microcavity lasers      polymer      protein     
Corresponding Author(s): Huailiang XU,Hongbo SUN   
Just Accepted Date: 03 August 2016   Online First Date: 06 September 2016    Issue Date: 28 September 2016
 Cite this article:   
Xuepeng ZHAN,Huailiang XU,Hongbo SUN. Femtosecond laser processing of microcavity lasers[J]. Front. Optoelectron., 2016, 9(3): 420-427.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-016-0581-8
https://academic.hep.com.cn/foe/EN/Y2016/V9/I3/420
Fig.1  Schematic diagram of homebuilt femtosecond laser processing system [35]
Fig.2  (a) Absorption spectra of RhB (circle), RhB-doped SU-8 (square) and photoluminescence (PL) spectrum of the mixed resin (diamond); (b) light output versus pumping laser intensity; (c) zoomed-in light output versus pumping laser intensity; (d) emission spectrum in the spectral range of 560– 680 nm; (e) emission spectra of microdisk laser at different pumping intensities [38]
Fig.3  (a) Room temperature emission spectra of the spiral-shaped disk microlaser. Inset: lasing intensity distribution measured with the signal emitted from different angles; (b) FDTD simulation results of spectral mode structure with the intensity distribution of the mode at 631.65 nm (inset) [43]
Fig.4  SEM pictures of planar PM microlasers [35]
Fig.5  (a) Schematic diagram of 3D PM microcavity lasers; (b) principle of single-mode lasing via Vernier effect; (c) three lasers are shown by simply changing a small smout of size, temperature, etc. The lasing wavelength can be modulated in a wide range; (d) emission spectrum of 3D PM lasers at different pumping intensities with diameters of 18 and 30 mm. Inset: light output versus the pumping intensity; (e) spectrum with more modes is shown, indicating the Vernier effect [46]
Fig.6  (a) PL spectra from a 60-mm-diameter protein-based 3D WGM microlaser in pure water. Inset: optical microscopic image; (b) lasing spectrum of test number 7 at room temperature; (c) peak values of PL spectra from the protein-based 3D WGM microlaser versus different pumping intensities. Insets: optical microscopic fluorescent images of samples; (d) 3D-waterfall arranged lasing spectra from the protein-based 3D WGM microlaser in aqueous solutions with increasing Na2SO4 concentrations with pumping intensity of ~ 2.0 mW/mm2; (e) 2D stacked lasing spectra in (d); (f) wavelength blueshift of a particular peak in lasing spectra along with Na2SO4 concentration increasing [47]
1 K J Vahala. Optical microcavities. Nature, 2003, 424(6950): 839–846
https://doi.org/10.1038/nature01939 pmid: 12917698
2 J Wiersig, C Gies, F Jahnke, M Aßmann, T Berstermann, M Bayer, C Kistner, S Reitzenstein, C Schneider, S Höfling, A Forchel, C Kruse, J Kalden, D Hommel. Direct observation of correlations between individual photon emission events of a microcavity laser. Nature, 2009, 460(7252): 245–249
https://doi.org/10.1038/nature08126 pmid: 19587766
3 T Harayama, S Shinohara. Two-dimensional microcavity lasers. Laser & Photonics Reviews, 2011, 5(2): 247–271
https://doi.org/10.1002/lpor.200900057
4 L He, Ş K Özdemir, L Yang. Whispering gallery microcavity lasers. Laser & Photonics Reviews, 2013, 7(1): 60–82
https://doi.org/10.1002/lpor.201100032
5 V S Ilchenko, A B Matsko. Optical resonators with whispering-gallery modes-part II: applications. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(1): 15–32
https://doi.org/10.1109/JSTQE.2005.862943
6 K Kosma, G Zito, K Schuster, S Pissadakis. Whispering gallery mode microsphere resonator integrated inside a microstructured optical fiber. Optics Letters, 2013, 38(8): 1301–1303
https://doi.org/10.1364/OL.38.001301 pmid: 23595465
7 D Dai, J Bauters, J E Bowers. Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction. Light: Science & Applications, 2012,1(3): e1-1–e1-12
8 K H Kim, G Bahl, W Lee, J Liu, M Tomes, X Fan, T Carmon. Cavity optomechanics on a microfluidic resonator with water and viscous liquids. Light: Science & Applications, 2013, 2(11):e110-1–e110-5
9 Y Lai, Y Lan, T Lu. Strong light–matter interaction in ZnO microcavities. Light: Science & Applications, 2013, 2(6): e76-1–e76-7
10 T Grossmann, M Hauser, T Beck, C Gohn-Kreuz, M Karl, H Kalt, C Vannahme, T Mappes. High-Q conical polymeric microcavities. Applied Physics Letters, 2010, 96(1): 013303
https://doi.org/10.1063/1.3280044
11 V D Ta, R Chen, H D Sun. Self-assembled flexible microlasers. Advanced Materials, 2012, 24(10): OP60–OP64
https://doi.org/10.1002/adma.201103409 pmid: 22323243
12 R Chen, Ta V D, H D Sun. Single mode lasing from hybrid hemispherical microresonators. Scientific Reports, 2012, 2: 244
https://doi.org/10.1038/srep00244 pmid: 22540027
13 Y Wu, P T Leung. Lasing threshold for whispering-gallery-mode microsphere lasers. Physical Review A, 1999, 60(1): 630–633
14 H Fang, R Ding, S Lu, Y Yang, Q Chen, J Feng, Y Huang, H Sun. Whispering-gallery mode lasing from patterned molecular single-crystalline microcavity array. Laser & Photonics Reviews, 2013, 7(2): 281–288
https://doi.org/10.1002/lpor.201200072
15 S Y Lu, H H Fang, J Feng, H Xia, T Q Zhang, Q D Chen, H B Sun. Highly stable on-chip embedded organic whispering gallery mode lasers. Journal of Lightwave Technology, 2014, 32(13): 2415–2419
https://doi.org/10.1109/JLT.2014.2326429
16 J K Kitur, V A Podolskiy, M A Noginov. Stimulated emission of surface plasmon polaritons in a microcylinder cavity. Physical Review Letters, 2011, 106(18): 183903
17 B Min, E Ostby, V Sorger, E Ulin-Avila, L Yang, X Zhang, K Vahala. High-Q surface-plasmon-polariton whispering-gallery microcavity. Nature, 2009, 457(7228): 455–458
https://doi.org/10.1038/nature07627 pmid: 19158793
18 X Jiang, C Zou, L Wang, Q Gong, Y Xiao. Whispering-gallery microcavities with unidirectional laser emission. Laser & Photonics Reviews, 2016, 10(1): 40–61
https://doi.org/10.1002/lpor.201500163
19 A M Armani, A Srinivasan, K J Vahala. Soft lithographic fabrication of high Q polymer microcavity arrays. Nano Letters, 2007, 7(6): 1823–1826
https://doi.org/10.1021/nl0708359 pmid: 17516682
20 Y Huang, J Lin, Y Yang, Q Yao, X Lv, J Xiao, Y Du. Unidirectional-emission single mode whispering-gallery-mode microlasers. In: Proceedings of SPIE, Microcavity Lasers and Applications I. 2012, 8236: 1–8
21 X Wu, H Li, L Liu, L Xu. Unidirectional single-frequency lasing from a ring-shaped coupled microcavity laser. Applied Physics Letters, 2008, 93(8): 081105
22 S Kawata, H B Sun, T Tanaka, K Takada. Finer features for functional microdevices. Nature, 2001, 412(6848): 697–698
https://doi.org/10.1038/35089130 pmid: 11507627
23 Y Zhang, Q Chen, H Xia, H Sun. Designable 3D nanofabrication by femtosecond laser direct writing. Nano Today, 2010, 5(5): 435–448
https://doi.org/10.1016/j.nantod.2010.08.007
24 Z P Liu, X F Jiang, Y Li, Y F Xiao, L Wang, J L Ren, S J Zhang, H Yang, Q Gong. High-Q asymmetric polymer microcavities directly fabricated by two-photon polymerization. Applied Physics Letters, 2013, 102(22): 221108
https://doi.org/10.1063/1.4809724
25 J Song, J Lin, J Tang, Y Liao, F He, Z Wang, L Qiao, K Sugioka, Y Cheng. Fabrication of an integrated high-quality-factor (high-Q) optofluidic sensor by femtosecond laser micromachining. Optics Express, 2014, 22(12): 14792–14802
https://doi.org/10.1364/OE.22.014792 pmid: 24977574
26 J Lin, S Yu, Y Ma, W Fang, F He, L Qiao, L Tong, Y Cheng, Z Xu. On-chip three-dimensional high-Q microcavities fabricated by femtosecond laser direct writing. Optics Express, 2012, 20(9): 10212–10217
https://doi.org/10.1364/OE.20.010212 pmid: 22535112
27 J Lin, Y Xu, Z Fang, M Wang, J Song, N Wang, L Qiao, W Fang, Y. ChengFabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining. Scientific Reports, 2015, 5: 8072
https://doi.org/10.1038/srep08072 pmid: 25627294
28 J Lin, Y Xu, J Tang, N Wang, J Song, F He, W Fang, Y Cheng. Fabrication of three-dimensional microdisk resonators in calcium fluoride by femtosecond laser micromachining. Applied Physics A, Materials Science & Processing, 2014, 116(4): 2019–2023
https://doi.org/10.1007/s00339-014-8388-1
29 V D Ta, R Chen, H Sun. Coupled polymer microfiber lasers for single mode operation and enhanced refractive index sensing. Advanced Optical Materials, 2014, 2(3): 220–225
https://doi.org/10.1002/adom.201300433
30 M P Joshi, H E Pudavar, J Swiatkiewicz, P N Prasad, B A Reianhardt. Three-dimensional optical circuitry using two-photon-assisted polymerization. Applied Physics Letters, 1999, 74(2): 170–172
https://doi.org/10.1063/1.123283
31 Y Zhang, L Guo, S Wei, Y He, H Xia, Q Chen, H Sun, F Xiao. Direct imprinting of microcircuits on grapheme oxides film by femtosecond laser reduction. Nano Today, 2010, 5(1): 15–20
https://doi.org/10.1016/j.nantod.2009.12.009
32 B B Xu, H Xia, L G Niu, Y L Zhang, K Sun, Q D Chen, Y Xu, Z Q Lv, Z H Li, H Misawa, H B Sun. Flexible nanowiring of metal on nonplanar substrates by femtosecond-laser-induced electroless plating. Small, 2010, 6(16): 1762–1766
https://doi.org/10.1002/smll.201000511 pmid: 20665756
33 H Xia, J Wang, Y Tian, Q D Chen, X B Du, Y L Zhang, Y He, H B Sun. Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization. Advanced Materials, 2010, 22(29): 3204–3207
https://doi.org/10.1002/adma.201000542 pmid: 20603886
34 J Wang, Y He, H Xia, L G Niu, R Zhang, Q D Chen, Y L Zhang, Y F Li, S J Zeng, J H Qin, B C Lin, H B Sun. Embellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalization. Lab on a Chip, 2010, 10(15): 1993–1996
https://doi.org/10.1039/c003264f pmid: 20508876
35 Q Huang, X Zhan, Z Hou, Q Chen, H Xu. Polymer photonic-molecule microlaser fabricated by femtosecond laser direct writing. Optics Communications, 2016, 362: 73–76
https://doi.org/10.1016/j.optcom.2015.08.018
36 T Grossmann, S Schleede, M Hauser, T Beck, M Thiel, G von Freymann, T Mappes, H Kalt. Direct laser writing for active and passive high-Q polymer microdisks on silicon. Optics Express, 2011, 19(12): 11451–11456
https://doi.org/10.1364/OE.19.011451 pmid: 21716376
37 Z Liu, X Jiang, Y Li, Y Xiao, L Wang, J Ren, S Zhang, H Yang, Q Gong. High-Q asymmetric polymer microcavities directly fabricated by two-photon polymerization. Applied Physics Letters, 2013, 102(22): 221108
https://doi.org/10.1063/1.4809724
38 J F Ku, Q D Chen, R Zhang, H B Sun. Whispering-gallery-mode microdisk lasers produced by femtosecond laser direct writing. Optics Letters, 2011, 36(15): 2871–2873
https://doi.org/10.1364/OL.36.002871 pmid: 21808342
39 F Sasaki, S Kobayashi, S Haraichi, S Fujiwara, K Bando, Y Masumoto, S Hotta. Microdisk and microring lasers of thiophene–phenylene co-oligomers embedded in Si/SiO2 substrates. Advanced Materials, 2007, 19(21): 3653–3655
https://doi.org/10.1002/adma.200701008
40 T Grossmann, S Schleede, M Hauser, T Beck, M Thiel, G von Freymann, T Mappes, H Kalt. Direct laser writing for active and passive high-Q polymer microdisks on silicon. Optics Express, 2011, 19(12): 11451–11456
https://doi.org/10.1364/OE.19.011451 pmid: 21716376
41 S Juodkazis, K Fujiwara, T Takahashi, S Matsuo, H Misawa. Morphology-dependent resonant laser emission of dye-doped ellipsoidal microcavity. Journal of Applied Physics, 2002, 91(3): 916–921
https://doi.org/10.1063/1.1426240
42 T Ben-Messaoud, J Zyss. Unidirectional laser emission from polymer-based spiral microdisks. Applied Physics Letters, 2005, 86(24): 241110
https://doi.org/10.1063/1.1949708
43 X P Zhan, J F Ku, Y X Xu, X L Zhang, J Zhao, W Fang, H L Xu, H B Sun. Unidirectional lasing from a spiral-shaped microcavity of dye-doped polymers fabricated by femtosecond laser direct writing. IEEE Photonics Technology Letters, 2015, 27(3): 311–314
https://doi.org/10.1109/LPT.2014.2370641
44 Y Hara, T Mukaiyama, K Takeda, M Kuwata-Gonokami. Photonic molecule lasing. Optics Letters, 2003, 28(24): 2437–2439
https://doi.org/10.1364/OL.28.002437 pmid: 14690107
45 T Grossmann, T Wienhold, U Bog, T Beck, C Friedmann, H Kalt, T Mappes. Polymeric photonic molecule super-mode lasers on silicon. Light: Science & Applications, 2013, 2(5): e82-1–e82-4
46 J F Ku, Q D Chen, X W Ma, Y D Yang, Y Z Huang, H L Xu, H B Sun. Photonic-molecule single-mode laser. IEEE Photonics Technology Letters, 2015, 27(11): 1157–1160
https://doi.org/10.1109/LPT.2015.2413052
47 Y Sun, Z Hou, S Sun, B Zheng, J Ku, W Dong, Q Chen, H Sun. Protein-based three-dimensional whispering-gallery-mode micro-lasers with stimulus-responsiveness. Scientific Reports, 2015, 5: 12852
[1] Yulan FU, Tianrui ZHAI. Distributed feedback organic lasing in photonic crystals[J]. Front. Optoelectron., 2020, 13(1): 18-34.
[2] Tao YUAN, Zhonghuan CAO, Guoli TU. Indium tin oxide-free inverted polymer solar cells with ultrathin metal transparent electrodes[J]. Front. Optoelectron., 2017, 10(4): 402-408.
[3] Changming CHEN,Daming ZHANG. Cross-cascaded AWG-based wavelength selective switching integrated module using polymer optical waveguide circuits[J]. Front. Optoelectron., 2016, 9(3): 428-435.
[4] Wei XIONG,Yunshen ZHOU,Wenjia HOU,Lijia JIANG,Masoud MAHJOURI-SAMANI,Jongbok PARK,Xiangnan HE,Yang GAO,Lisha FAN,Tommaso BALDACCHINI,Jean-Francois SILVAIN,Yongfeng LU. Laser-based micro/nanofabrication in one, two and three dimensions[J]. Front. Optoelectron., 2015, 8(4): 351-378.
[5] Hao RUAN. Recent advances in holographic data storage[J]. Front. Optoelectron., 2014, 7(4): 450-466.
[6] Debin NI, Dong YANG, Shuying MA, Guoli TU, Jian ZHANG. Side chains and backbone structures influence on 4,7-dithien-2-yl-2,1,3-benzothiadiazole (DTBT)-based low-bandgap conjugated copolymers for organic photovoltaics[J]. Front Optoelec, 2013, 6(4): 418-428.
[7] Gentian YUE, Jihuai WU, Jianming LIN, Miaoliang HUANG, Ying YAO, Leqing FAN, Yaoming XIAO. Application of Poly (3, 4-ethylenedioxythiophene): polystyrenesulfonate counter electrode in polymer heterojunction dye-sensitized solar cells[J]. Front Optoelec Chin, 2011, 4(4): 369-377.
[8] Louis M. LEUNG, Yik-Chung LAW, Michael Y. WONG, Tik-Ho LEE, Kin Ming LAI, Lok-Yee TANG. Charge balance materials for homojunction and heterojunction OLED applications[J]. Front Optoelec Chin, 2009, 2(4): 435-441.
[9] Xinlong CHANG, Ming LI, Xuanzi HAN. Recent development and applications of polymer optical fiber sensors for strain measurement[J]. Front Optoelec Chin, 2009, 2(4): 362-367.
[10] ZUO Tiechuan, QI Heng, YAO Liying, CHEN Tao. Miniaturized continuous-flow polymerase chain reaction microfluidic chip system[J]. Front. Optoelectron., 2008, 1(1-2): 39-43.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed