|
|
|
Femtosecond laser processing of microcavity lasers |
Xuepeng ZHAN, Huailiang XU( ), Hongbo SUN( ) |
| State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China |
|
|
|
|
Abstract In this paper, we reviewed the fabrications of functional microcavity lasers in soft materials such as polymer and protein by femtosecond laser processing. High-quality (Q) microdisks with a laser dye (Rhodamine B, RhB) acting as gain medium were fabricated that produced whispering-gallery-mode (WGM) lasing output. We also obtained unidirectional lasing output with a low lasing threshold in a deformed spiral microcavity at room temperature. Photonic-molecule (PM) microlasers were prepared to investigate the interaction and coupling effects of different cavities, and it was found that the distance between the two disks plays an important role in the lasing behaviors. Single-mode lasing was realized from a stacked PM microlaser through Vernier effect. Furthermore we adopted the biocompatible materials, RhB-doped proteins as a host material and fabricated a three-dimensional (3D) WGM microlaser, which operated well both in air and aqueous environment. The sensing of the protein microlasers to Na2SO4 concentration was investigated. Our results of fabricating high-Q microlasers with different materials reveal the potential applications of femtosecond laser processing in the areas of integrated optoelectronic and ultrahigh sensitive bio-sensing devices.
|
| Keywords
femtosecond laser processing
microcavity lasers
polymer
protein
|
|
Corresponding Author(s):
Huailiang XU,Hongbo SUN
|
|
Just Accepted Date: 03 August 2016
Online First Date: 06 September 2016
Issue Date: 28 September 2016
|
|
| 1 |
K J Vahala. Optical microcavities. Nature, 2003, 424(6950): 839–846
https://doi.org/10.1038/nature01939
pmid: 12917698
|
| 2 |
J Wiersig, C Gies, F Jahnke, M Aßmann, T Berstermann, M Bayer, C Kistner, S Reitzenstein, C Schneider, S Höfling, A Forchel, C Kruse, J Kalden, D Hommel. Direct observation of correlations between individual photon emission events of a microcavity laser. Nature, 2009, 460(7252): 245–249
https://doi.org/10.1038/nature08126
pmid: 19587766
|
| 3 |
T Harayama, S Shinohara. Two-dimensional microcavity lasers. Laser & Photonics Reviews, 2011, 5(2): 247–271
https://doi.org/10.1002/lpor.200900057
|
| 4 |
L He, Ş K Özdemir, L Yang. Whispering gallery microcavity lasers. Laser & Photonics Reviews, 2013, 7(1): 60–82
https://doi.org/10.1002/lpor.201100032
|
| 5 |
V S Ilchenko, A B Matsko. Optical resonators with whispering-gallery modes-part II: applications. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(1): 15–32
https://doi.org/10.1109/JSTQE.2005.862943
|
| 6 |
K Kosma, G Zito, K Schuster, S Pissadakis. Whispering gallery mode microsphere resonator integrated inside a microstructured optical fiber. Optics Letters, 2013, 38(8): 1301–1303
https://doi.org/10.1364/OL.38.001301
pmid: 23595465
|
| 7 |
D Dai, J Bauters, J E Bowers. Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction. Light: Science & Applications, 2012,1(3): e1-1–e1-12
|
| 8 |
K H Kim, G Bahl, W Lee, J Liu, M Tomes, X Fan, T Carmon. Cavity optomechanics on a microfluidic resonator with water and viscous liquids. Light: Science & Applications, 2013, 2(11):e110-1–e110-5
|
| 9 |
Y Lai, Y Lan, T Lu. Strong light–matter interaction in ZnO microcavities. Light: Science & Applications, 2013, 2(6): e76-1–e76-7
|
| 10 |
T Grossmann, M Hauser, T Beck, C Gohn-Kreuz, M Karl, H Kalt, C Vannahme, T Mappes. High-Q conical polymeric microcavities. Applied Physics Letters, 2010, 96(1): 013303
https://doi.org/10.1063/1.3280044
|
| 11 |
V D Ta, R Chen, H D Sun. Self-assembled flexible microlasers. Advanced Materials, 2012, 24(10): OP60–OP64
https://doi.org/10.1002/adma.201103409
pmid: 22323243
|
| 12 |
R Chen, Ta V D, H D Sun. Single mode lasing from hybrid hemispherical microresonators. Scientific Reports, 2012, 2: 244
https://doi.org/10.1038/srep00244
pmid: 22540027
|
| 13 |
Y Wu, P T Leung. Lasing threshold for whispering-gallery-mode microsphere lasers. Physical Review A, 1999, 60(1): 630–633
|
| 14 |
H Fang, R Ding, S Lu, Y Yang, Q Chen, J Feng, Y Huang, H Sun. Whispering-gallery mode lasing from patterned molecular single-crystalline microcavity array. Laser & Photonics Reviews, 2013, 7(2): 281–288
https://doi.org/10.1002/lpor.201200072
|
| 15 |
S Y Lu, H H Fang, J Feng, H Xia, T Q Zhang, Q D Chen, H B Sun. Highly stable on-chip embedded organic whispering gallery mode lasers. Journal of Lightwave Technology, 2014, 32(13): 2415–2419
https://doi.org/10.1109/JLT.2014.2326429
|
| 16 |
J K Kitur, V A Podolskiy, M A Noginov. Stimulated emission of surface plasmon polaritons in a microcylinder cavity. Physical Review Letters, 2011, 106(18): 183903
|
| 17 |
B Min, E Ostby, V Sorger, E Ulin-Avila, L Yang, X Zhang, K Vahala. High-Q surface-plasmon-polariton whispering-gallery microcavity. Nature, 2009, 457(7228): 455–458
https://doi.org/10.1038/nature07627
pmid: 19158793
|
| 18 |
X Jiang, C Zou, L Wang, Q Gong, Y Xiao. Whispering-gallery microcavities with unidirectional laser emission. Laser & Photonics Reviews, 2016, 10(1): 40–61
https://doi.org/10.1002/lpor.201500163
|
| 19 |
A M Armani, A Srinivasan, K J Vahala. Soft lithographic fabrication of high Q polymer microcavity arrays. Nano Letters, 2007, 7(6): 1823–1826
https://doi.org/10.1021/nl0708359
pmid: 17516682
|
| 20 |
Y Huang, J Lin, Y Yang, Q Yao, X Lv, J Xiao, Y Du. Unidirectional-emission single mode whispering-gallery-mode microlasers. In: Proceedings of SPIE, Microcavity Lasers and Applications I. 2012, 8236: 1–8
|
| 21 |
X Wu, H Li, L Liu, L Xu. Unidirectional single-frequency lasing from a ring-shaped coupled microcavity laser. Applied Physics Letters, 2008, 93(8): 081105
|
| 22 |
S Kawata, H B Sun, T Tanaka, K Takada. Finer features for functional microdevices. Nature, 2001, 412(6848): 697–698
https://doi.org/10.1038/35089130
pmid: 11507627
|
| 23 |
Y Zhang, Q Chen, H Xia, H Sun. Designable 3D nanofabrication by femtosecond laser direct writing. Nano Today, 2010, 5(5): 435–448
https://doi.org/10.1016/j.nantod.2010.08.007
|
| 24 |
Z P Liu, X F Jiang, Y Li, Y F Xiao, L Wang, J L Ren, S J Zhang, H Yang, Q Gong. High-Q asymmetric polymer microcavities directly fabricated by two-photon polymerization. Applied Physics Letters, 2013, 102(22): 221108
https://doi.org/10.1063/1.4809724
|
| 25 |
J Song, J Lin, J Tang, Y Liao, F He, Z Wang, L Qiao, K Sugioka, Y Cheng. Fabrication of an integrated high-quality-factor (high-Q) optofluidic sensor by femtosecond laser micromachining. Optics Express, 2014, 22(12): 14792–14802
https://doi.org/10.1364/OE.22.014792
pmid: 24977574
|
| 26 |
J Lin, S Yu, Y Ma, W Fang, F He, L Qiao, L Tong, Y Cheng, Z Xu. On-chip three-dimensional high-Q microcavities fabricated by femtosecond laser direct writing. Optics Express, 2012, 20(9): 10212–10217
https://doi.org/10.1364/OE.20.010212
pmid: 22535112
|
| 27 |
J Lin, Y Xu, Z Fang, M Wang, J Song, N Wang, L Qiao, W Fang, Y. ChengFabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining. Scientific Reports, 2015, 5: 8072
https://doi.org/10.1038/srep08072
pmid: 25627294
|
| 28 |
J Lin, Y Xu, J Tang, N Wang, J Song, F He, W Fang, Y Cheng. Fabrication of three-dimensional microdisk resonators in calcium fluoride by femtosecond laser micromachining. Applied Physics A, Materials Science & Processing, 2014, 116(4): 2019–2023
https://doi.org/10.1007/s00339-014-8388-1
|
| 29 |
V D Ta, R Chen, H Sun. Coupled polymer microfiber lasers for single mode operation and enhanced refractive index sensing. Advanced Optical Materials, 2014, 2(3): 220–225
https://doi.org/10.1002/adom.201300433
|
| 30 |
M P Joshi, H E Pudavar, J Swiatkiewicz, P N Prasad, B A Reianhardt. Three-dimensional optical circuitry using two-photon-assisted polymerization. Applied Physics Letters, 1999, 74(2): 170–172
https://doi.org/10.1063/1.123283
|
| 31 |
Y Zhang, L Guo, S Wei, Y He, H Xia, Q Chen, H Sun, F Xiao. Direct imprinting of microcircuits on grapheme oxides film by femtosecond laser reduction. Nano Today, 2010, 5(1): 15–20
https://doi.org/10.1016/j.nantod.2009.12.009
|
| 32 |
B B Xu, H Xia, L G Niu, Y L Zhang, K Sun, Q D Chen, Y Xu, Z Q Lv, Z H Li, H Misawa, H B Sun. Flexible nanowiring of metal on nonplanar substrates by femtosecond-laser-induced electroless plating. Small, 2010, 6(16): 1762–1766
https://doi.org/10.1002/smll.201000511
pmid: 20665756
|
| 33 |
H Xia, J Wang, Y Tian, Q D Chen, X B Du, Y L Zhang, Y He, H B Sun. Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization. Advanced Materials, 2010, 22(29): 3204–3207
https://doi.org/10.1002/adma.201000542
pmid: 20603886
|
| 34 |
J Wang, Y He, H Xia, L G Niu, R Zhang, Q D Chen, Y L Zhang, Y F Li, S J Zeng, J H Qin, B C Lin, H B Sun. Embellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalization. Lab on a Chip, 2010, 10(15): 1993–1996
https://doi.org/10.1039/c003264f
pmid: 20508876
|
| 35 |
Q Huang, X Zhan, Z Hou, Q Chen, H Xu. Polymer photonic-molecule microlaser fabricated by femtosecond laser direct writing. Optics Communications, 2016, 362: 73–76
https://doi.org/10.1016/j.optcom.2015.08.018
|
| 36 |
T Grossmann, S Schleede, M Hauser, T Beck, M Thiel, G von Freymann, T Mappes, H Kalt. Direct laser writing for active and passive high-Q polymer microdisks on silicon. Optics Express, 2011, 19(12): 11451–11456
https://doi.org/10.1364/OE.19.011451
pmid: 21716376
|
| 37 |
Z Liu, X Jiang, Y Li, Y Xiao, L Wang, J Ren, S Zhang, H Yang, Q Gong. High-Q asymmetric polymer microcavities directly fabricated by two-photon polymerization. Applied Physics Letters, 2013, 102(22): 221108
https://doi.org/10.1063/1.4809724
|
| 38 |
J F Ku, Q D Chen, R Zhang, H B Sun. Whispering-gallery-mode microdisk lasers produced by femtosecond laser direct writing. Optics Letters, 2011, 36(15): 2871–2873
https://doi.org/10.1364/OL.36.002871
pmid: 21808342
|
| 39 |
F Sasaki, S Kobayashi, S Haraichi, S Fujiwara, K Bando, Y Masumoto, S Hotta. Microdisk and microring lasers of thiophene–phenylene co-oligomers embedded in Si/SiO2 substrates. Advanced Materials, 2007, 19(21): 3653–3655
https://doi.org/10.1002/adma.200701008
|
| 40 |
T Grossmann, S Schleede, M Hauser, T Beck, M Thiel, G von Freymann, T Mappes, H Kalt. Direct laser writing for active and passive high-Q polymer microdisks on silicon. Optics Express, 2011, 19(12): 11451–11456
https://doi.org/10.1364/OE.19.011451
pmid: 21716376
|
| 41 |
S Juodkazis, K Fujiwara, T Takahashi, S Matsuo, H Misawa. Morphology-dependent resonant laser emission of dye-doped ellipsoidal microcavity. Journal of Applied Physics, 2002, 91(3): 916–921
https://doi.org/10.1063/1.1426240
|
| 42 |
T Ben-Messaoud, J Zyss. Unidirectional laser emission from polymer-based spiral microdisks. Applied Physics Letters, 2005, 86(24): 241110
https://doi.org/10.1063/1.1949708
|
| 43 |
X P Zhan, J F Ku, Y X Xu, X L Zhang, J Zhao, W Fang, H L Xu, H B Sun. Unidirectional lasing from a spiral-shaped microcavity of dye-doped polymers fabricated by femtosecond laser direct writing. IEEE Photonics Technology Letters, 2015, 27(3): 311–314
https://doi.org/10.1109/LPT.2014.2370641
|
| 44 |
Y Hara, T Mukaiyama, K Takeda, M Kuwata-Gonokami. Photonic molecule lasing. Optics Letters, 2003, 28(24): 2437–2439
https://doi.org/10.1364/OL.28.002437
pmid: 14690107
|
| 45 |
T Grossmann, T Wienhold, U Bog, T Beck, C Friedmann, H Kalt, T Mappes. Polymeric photonic molecule super-mode lasers on silicon. Light: Science & Applications, 2013, 2(5): e82-1–e82-4
|
| 46 |
J F Ku, Q D Chen, X W Ma, Y D Yang, Y Z Huang, H L Xu, H B Sun. Photonic-molecule single-mode laser. IEEE Photonics Technology Letters, 2015, 27(11): 1157–1160
https://doi.org/10.1109/LPT.2015.2413052
|
| 47 |
Y Sun, Z Hou, S Sun, B Zheng, J Ku, W Dong, Q Chen, H Sun. Protein-based three-dimensional whispering-gallery-mode micro-lasers with stimulus-responsiveness. Scientific Reports, 2015, 5: 12852
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|