Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2016, Vol. 9 Issue (2) : 301-305    https://doi.org/10.1007/s12200-016-0609-0
RESEARCH ARTICLE
Research on multi-kilowatts level tapered fiber bundle N×1 pumping combiner for high power fiber laser
Qirong XIAO,Yusheng HUANG,Junyi SUN,Xuejiao WANG,Dan LI,Mali GONG,Ping YAN()
Center for Photonics and Electronics, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
 Download: PDF(690 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Pumping combiner is a kernel component of high power fiber laser (HPFL). We demonstrate two types of tapered fiber bundle (TFB) end-pumping combiner able to combining multi-kilowatts of pumping laser. After the experimental test of coupling performance, the 3×1 coupler is proved to have a power handling capacity of 2.11 kW with a coupling efficiency of 95.1%, and the 7×1 coupler is capable of handling pumping power of 4.72 kW with a coupling efficiency of 99.4%. These two coupler have obtained the ability to be used in laser diodes (LDs) direct beam combining and the pumping coupling of multi-kilowatts level fiber lasers.

Keywords high power fiber laser (HPFL)      pumping combiner      tapered fiber bundle (TFB)     
Corresponding Author(s): Ping YAN   
Just Accepted Date: 22 February 2016   Online First Date: 29 March 2016    Issue Date: 05 April 2016
 Cite this article:   
Qirong XIAO,Yusheng HUANG,Junyi SUN, et al. Research on multi-kilowatts level tapered fiber bundle N×1 pumping combiner for high power fiber laser[J]. Front. Optoelectron., 2016, 9(2): 301-305.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-016-0609-0
https://academic.hep.com.cn/foe/EN/Y2016/V9/I2/301
Fig.1  Manufacturing process of TFB end-pumping combiner
Fig.2  Cross section of the fiber bundles of different combiners
Fig.3  Schematic of the experimental setup for the test of coupling efficiency
Fig.4  Schematic of the test of power handling capacity of 3 × 1 combiner
Fig.5  Output power of 3 × 1 combiner versus pumping power
Fig.6  Coupling efficiency of single input of 7 × 1 combiner
Fig.7  Schematic of the test of power handling capacity of 7 × 1 combiner
Fig.8  Photo of the test of power handling capacity of 7 × 1 combiner
Fig.9  Output power of 7 × 1 combiner versus pumping power
1 Grudinin B D N P, Turner P W, Nilsson L J A, Zervas M N, Ibsen M, Durkin M K. Multi-fibre arrangements for high power fibre lasers and amplifiers. U.S. Patent 6826335, 2004
2 Wang D, Wang Y, Liu S, Ma X. New reflecting side-pumped method of double-clad fiber laser by micro-prism. Acta Optica Sinica, 2009, 29(4): 974–979
https://doi.org/10.3788/AOS20092904.0974
3 Sean W M, Koplow J P, Hansen A. Embedded-mirror side-pumping of double-clad fiber lasers and amplifiers. In: Proceedings of Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, 2008
4 Ripin D J, Goldberg L. High efficiency side-coupling of light into optical fibres using imbedded V-grooves. Electronics Letters, 1995, 31(25): 2204–2205
https://doi.org/10.1049/el:19951429
5 Xiao Q, Yan P, Yin S, Hao J, Gong M. 100 W ytterbium-doped monolithic fiber laser with fused angle-polished side-pumping configuration. Laser Physics Letters, 2011, 8(2): 125–129
https://doi.org/10.1002/lapl.201010090
6 Huang C W, Chang C L, Jheng D Y, Hsu K Y, Huang S L, Huang D W. Direct side pumping of double-clad fiber laser by laser diode array through the use of subwavelength grating coupler. IEEE Photonics Journal, 2012, 4(2): 411–421
https://doi.org/10.1109/JPHOT.2012.2186561
7 Xiao Q, Yan P, Ren H, Chen X, Gong M. A side-pump coupler with fefractive index valley configuration for fiber lasers and amplifiers. Journal of Lightwave Technology, 2013, 31(16): 3015–3022
https://doi.org/10.1109/JLT.2013.2271910
8 Kopp V I, Park J, Wlodawski M. Polarization maintaining, high-power and high-efficiency (6+1)×1 pump/signal combiner. In: Proceedings of SPIE 8961, Fiber Lasers XI: Technology, Systems, and Applications. 2014, 89612N doi:10.1117/12.2040962
9 Wetter A, Faucher M, Lovelady M, Séguin F. Tapered fused-bundle splitter capable of 1 kW CW operation. In: Proceedings of the Society for Photo-Instrumentation Engineers. 2007, 64530I
https://doi.org/10.1117/12.700466
10 Xiao Q, Yan P, He J, Wang Y, Zhang X, Gong M. Tapered fused fiber bundle coupler capable of 1 kW laser combining and 300 W laser splitting. Laser Physics, 2011, 21(8): 1415–1419
https://doi.org/10.1134/S1054660X11150308
11 Xiao Q, Ren H, Chen X, Yan P, Gong M. Tapered fiber bundle 7 × 1 end-pumping coupler capable of high power CW operation. IEEE Photonics Technology Letters, 2013, 25(24): 2442–2445
https://doi.org/10.1109/LPT.2013.2288111
12 Zhou H, Chen Z, Zhou X, Hou J, Chen J. All-fiber 7×1 pump combiner for high power fiber laser. Optics Communications, 2015, 347: 137–140
https://doi.org/10.1016/j.optcom.2015.03.001
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed