Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2016, Vol. 9 Issue (2) : 323-329    https://doi.org/10.1007/s12200-016-0616-1
RESEARCH ARTICLE
Laser annealing of SiO2 film deposited by ICPECVD for fabrication of silicon based low loss waveguide
Ya’nan WANG,Yi LUO(),Changzheng SUN,Bing XIONG,Jian WANG,Zhibiao HAO,Yanjun HAN,Lai WANG,Hongtao LI
Tsinghua National Laboratory for Information Science and Technology/State Key Lab of Integrated Optoelectronics, Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
 Download: PDF(2609 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Laser annealing of silicon dioxide (SiO2) film formed by inductively coupled plasma enhanced chemical vapor deposition (ICPECVD) is studied for the fabrication of low loss silicon based waveguide. The influence of laser annealing on ICPECVD-deposited SiO2 film is investigated. The surface roughness, refractive index, and etch rate of annealed samples are compared with those of SiO2 film obtained by thermal oxidation. It is demonstrated that the performance of ICPECVD-deposited SiO2 film can be significantly improved by laser annealing. Al2O3/SiO2 waveguide has been fabricated on silicon substrate with the SiO2 lower cladding formed by ICPECVD and laser annealing process, and its propagation loss is found to be comparable with that of the waveguide with thermally oxidized lower cladding.

Keywords laser annealing      waveguide loss      silicon dioxide      inductively coupled plasma enhanced chemical vapor deposition (ICPECVD)     
Corresponding Author(s): Yi LUO   
Just Accepted Date: 25 February 2016   Online First Date: 28 March 2016    Issue Date: 05 April 2016
 Cite this article:   
Ya’nan WANG,Yi LUO,Changzheng SUN, et al. Laser annealing of SiO2 film deposited by ICPECVD for fabrication of silicon based low loss waveguide[J]. Front. Optoelectron., 2016, 9(2): 323-329.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-016-0616-1
https://academic.hep.com.cn/foe/EN/Y2016/V9/I2/323
Fig.1  Refractive index and thickness of the ICPECVD-SiO2 film vs. annealing laser power
Fig.2  Etch rates of SiO2 samples by SF6 plasma
Fig.3  Etch rate of SiO2 samples in buffered HF
Fig.4  SEM images of SiO2 samples before and after dry etching with SF6 plasma or wet etching in buffered HF
Fig.5  Cross section SEM images of (a) as-deposited and annealed samples with (b) 12 W, (c) 13 W, and (d) 14 W laser power
Fig.6  AFM images of sample surfaces before and after dry etch in SF6 plasma and wet etching in buffered HF
Fig.7  RMS surface roughness of the samples (a) before etching, (b) after SF6 dry etch, (c) after wet etching in buffered HF
lower cladding propagation loss/(dB·cm-1)
TE mode TM mode
As-deposited 7.8 6.4
annealed with 14 W power 6.4 5.6
thermal oxidation 6.4 5.4
Tab.1  Correlation between the lower cladding and propagation loss
1 Bhatt V, Chandra S. Silicon dioxide films by RF sputtering for microelectronic and MEMS applications. Journal of Micromechanics and Microengineering, 2007, 17(5): 1066–1077
https://doi.org/10.1088/0960-1317/17/5/029
2 Zheleva T, Lelis A, Duscher G, Liu F, Levin I, Das M. Transition layers at the SiO2/SiC interface. Applied Physics Letters, 2008, 93(2): 022108-022108–3
https://doi.org/10.1063/1.2949081
3 Kawachi M. Silica waveguides on silicon and their application to integrated-optic components. Optical and Quantum Electronics, 1990, 22(5): 391–416
https://doi.org/10.1007/BF02113964
4 Bauters J F, Heck M J R, John D, Dai D, Tien M C, Barton J S, Leinse A, Heideman R G, Blumenthal D J, Bowers J E. Ultra-low-loss high-aspect-ratio Si3N4 waveguides. Optics Express, 2011, 19(4): 3163–3174
https://doi.org/10.1364/OE.19.003163 pmid: 21369138
5 Ghandhi S. VLSI Fabrication Principles Silicon and Gallium Arsenide. New York: J. Wiley and Sons, 1994, 452–482
6 Gherardi N, Martin S, Massines F. A new approach to SiO2 deposit using a N2-SiH4-N2O glow dielectric barrier-controlled discharge at atmospheric pressure. Journal of Physics D: Applied Physics, 2000, 33(19): L104–L108
https://doi.org/10.1088/0022-3727/33/19/102
7 Santamaria J, Iborra E, Quesada F S, Diaz G G, Vidal M R. Sputtering of SiO2 in O2-Ar atmospheres. Thin Solid Films, 1986, 139(2): 201–208
https://doi.org/10.1016/0040-6090(86)90338-X
8 Duran A, Serna C, Fornes V, Navarro J M F. Structural considerations about SiO2 glasses prepared by sol-gel. Journal of Non-Crystalline Solids, 1986, 82(1-3): 69–77
https://doi.org/10.1016/0022-3093(86)90112-2
9 Zúñiga-Segundo A, Ruiz F, Vázquez-López C, González-Hernández J, Torres-Delgado G, Tsu D V. Characterization of SiO2 layers on Si wafers using atomic force microscopy. Journal of Vacuum Science & Technology, 1994, 12(4): 2572–2576
https://doi.org/10.1116/1.579059
10 Chen X Y, Lu Y F, Tang L J, Wu Y H, Cho B J, Xu X J, Dong J R, Song W D. Annealing and oxidation of silicon oxide films prepared by plasma-enhanced chemical vapor deposition. Journal of Applied Physics, 2005, 97(1): 014913
https://doi.org/10.1063/1.1829789
11 Ay F, Aydinli A. Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides. Optical Materials, 2004, 26(1): 33–46
https://doi.org/10.1016/j.optmat.2003.12.004
12 Boogaard A, Kovalgin A Y, Brunets I, Aarnink A A I, Holleman J, Wolters R A M, Schmitz J. Characterization of SiO2 films deposited at low temperature by means of remote ICPECVD. Surface and Coatings Technology, 2007, 201(22-23): 8976–8980
https://doi.org/10.1016/j.surfcoat.2007.04.039
13 Bauters J F, Heck M J R, John D D, Barton J S, Bruinink C M, Leinse A, Heideman R G, Blumenthal D J, Bowers J E. Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding. Optics Express, 2011, 19(24): 24090–24101
https://doi.org/10.1364/OE.19.024090 pmid: 22109434
14 Armani D K, Kippenberg T J, Spillane S M, Vahala K J. Ultra-high-Q toroid microcavity on a chip. Nature, 2003, 421(6926): 925–928
https://doi.org/10.1038/nature01371 pmid: 12606995
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed