Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2016, Vol. 9 Issue (2) : 259-269    https://doi.org/10.1007/s12200-016-0618-z
REVIEW ARTICLE
Progress on mid-IR graphene photonics and biochemical applications
Zhenzhou CHENG1,*(),Changyuan QIN1,Fengqiu WANG2,*(),Hao HE3,Keisuke GODA1,4,5,*()
1. Department of Chemistry, University of Tokyo, Tokyo 113-0033, Japan
2. School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
3. Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200031, China
4. Department of Electrical Engineering, University of California, Los Angeles 90095, USA
5. Japan Science and Technology Agency, Tokyo 102-0076, Japan
 Download: PDF(1116 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Mid-infrared (mid-IR) (2-20 μm) photonics has numerous chemical and biologic “fingerprint” sensing applications due to characteristic vibrational transitions of molecules in the mid-IR spectral region. Unfortunately, compared to visible light and telecommunication band wavelengths, photonic devices and applications have been difficult to develop at mid-IR wavelengths because of the intrinsic limitation of conventional materials. Breaking a new ground in the mid-IR science and technology calls for revolutionary materials. Graphene, a single atom layer of carbon arranged in a honey-comb lattice, has various promising optical and electrical properties because of its linear dispersion band structure and zero band gap features. In this review article, we discuss recent research developments on mid-IR graphene photonics, in particular ultrafast lasers and photodetectors. Graphene-photonics-based biochemical applications, such as plasmonic sensing, photodynamic therapy, and florescence imaging are also reviewed.

Keywords mid-infrared (mid-IR)      graphene      lasers      photodetectors      optical sensing and sensors      photodynamic therapy      spectroscopy      fluorescence and luminescence     
Corresponding Author(s): Zhenzhou CHENG,Fengqiu WANG,Keisuke GODA   
Just Accepted Date: 25 February 2016   Online First Date: 31 March 2016    Issue Date: 05 April 2016
 Cite this article:   
Zhenzhou CHENG,Changyuan QIN,Fengqiu WANG, et al. Progress on mid-IR graphene photonics and biochemical applications[J]. Front. Optoelectron., 2016, 9(2): 259-269.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-016-0618-z
https://academic.hep.com.cn/foe/EN/Y2016/V9/I2/259
Fig.1  Graphene-based mode-locked pulse laser [28]. (a) Er3+-doped ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN) fiber laser incorporating a multi-layer graphene mirror as a saturable absorber; (b) measured autocorrelation trace showing a full width at half maximum (FWHM) pulse width of 65 ps. Assuming a sech2 profile, this yields a pulse duration of ~ 42 ps; (c) optical spectrum of the mode-locked laser, showing a mid-IR center wavelength of ~2.78 μm
reference gain medium pulse width peak power center wavelength
Wang et al. [20] Tm-doped fiber 2.3 μs 30 mW 1884 nm
Zhang et al. [21] Tm-doped fiber 3.6 ps 111 W 1940 nm
Ma et al. [22] Tm:CLNGG crystal 729 fs 837 W 2018 nm
Lagatsky et al. [23] Tm:Lu2O3 crystal 410 fs 5.99 KW 2067 nm
Cizmeciyan et al. [24] Cr:ZnSe cyrstal 226 fs 4.60 KW 2500 nm
Wang et al. [25] Tm:YAG crystal 2.25 μs 690 mW 2010 nm
Tolstik et al. [26] Cr:ZnS crystal 61 fs 62.30 KW 2350 nm
Wei et al. [27] Er3+-doped ZBLAN fiber 2.9 μs 580 mW 2783 nm
Zhu et al. [28] Er3+-doped ZBLAN fiber 42 ps 16.67 W 2784 nm
Tab.1  Performance of mid-IR graphene ultrafast lasers
Fig.2  Schematic pictures showing different working mechanisms of graphene photodetectors. (a) Photovoltaic effect; (b) photoconductive effect; (c) photothermoelectric effect; (d) bolometric effect
Fig.3  Graphene on a silicon suspended waveguide as a photodetector [30]. (a) Schematic picture of the graphene photodetector; (b) dark current and photocurrent measurements under different bias voltages at the wavelength of 2.75 μm
Fig.4  Silicon-on-sapphire (SOS) waveguide photodetector [31]. (a) Schematic pictures of the photodetector; (b) scanning electron microscope image of the photodetector. The patterned region (without graphene) shows a clear contrast
reference mechanism responsivity working bandwidth wavelength
Mueller et al. [29] photovoltaic effect 6.1 mA/W 10 GHz up to 6 μm
Wang et al. [30] photovoltaic effect 0.13 A/W 2.75 μm
Cheng et al. [31] photovoltaic effect 4.5 mA/W 2.75 μm
Liu et al. [32] photoconductive effect 1.1 A/W 1 KHz 3.2 μm
Zhang et al. [33] photoconductive effect 0.4 A/W 10 μm
Yao et al. [34] photoconductive effect 0.4 V/W ~6 MHz 4.45 μm
Hsu et al. [35] photothermoelectric effect 7 - 9 V/W ~20 Hz 10.6 μm
Badioli et al. [36] photothermoelectric effect 7.19-9.26 μm
Yan et al. [38] bolometric effect 2 × 105 V/W >1 GHz 10.6 μm
Freitag et al. [39] bolometric effect 6-12 μm
Tab.2  Performance of mid-IR graphene photodetectors
Fig.5  Graphene on a silicon slot waveguide as a photodetector [41]. (a) Schematic picture of the photodetector; (b) absorption simulation of the photodetector. The inset shows energy distributions of different types of waveguides (WGs)
Fig.6  Graphene on a silicon nitride microring resonator [42]. (a) Schematic picture of the resonator; (b) resonance spectra measurements and Lorentzian fittings
1 Schliesser A, Picqué N, Hänsch T W. Mid-infrared frequency combs. Nature Photonics, 2012, 6(7): 440–449
https://doi.org/10.1038/nphoton.2012.142
2 Jackson S D. Towards high-power mid-infrared emission from a fibre laser. Nature Photonics, 2012, 6(7): 423–431
https://doi.org/10.1038/nphoton.2012.149
3 Martinez A, Sun Z. Nanotube and graphene saturable absorbers for fire lasers. Nature Photonics, 2013, 7(11): 842–845
https://doi.org/10.1038/nphoton.2013.304
4 Keuleyan S, Lhuillier E, Brajuskovic V, Guyot-Sionnest P. Mid-infrared HgTe colloidal quantum dot photodetectors. Nature Photonics, 2011, 5(8): 489–493
https://doi.org/10.1038/nphoton.2011.142
5 Novoselv K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Electric field effect in atomically thin carbon films. Science, 2004 , 306(5696): 666–669
6 Bonaccorso F, Sun Z, Hasan T, Ferrari A C. Graphene photonics and optoelectronics. Nature Photonics, 2010, 4(9): 611–622
https://doi.org/10.1038/nphoton.2010.186
7 Xia F, Yan H, Avouris P. The interaction of light and graphene: basics, devices, and applications. Proceedings of the IEEE, 2013, 101(7): 1717–1731
https://doi.org/10.1109/JPROC.2013.2250892
8 Ostojic G N, Zaric S, Kono J, Strano M S, Moore V C, Hauge R H, Smalley R E. Interband recombination dynamics in resonantly excited single-walled carbon nanotubes. Physical Review Letters, 2004, 92(11): 117402
https://doi.org/10.1103/PhysRevLett.92.117402 pmid: 15089165
9 Dawlaty J M, Shivaraman S, Chandrashekhar M, Rana F, Spencer M G. Measurement of ultrafast carrier dynamics in epitaxial graphene. Applied Physics Letters, 2008, 92(4): 042116
https://doi.org/10.1063/1.2837539
10 Hasan T, Sun Z, Wang F, Bonaccorso F, Tan P H, Rozhin A G, Ferrari A C. Nanotube polymer composites for ultrafast photonics. Advanced Materials, 2009, 21(38-39): 3874–3899
https://doi.org/10.1002/adma.200901122
11 Bao Q, Zhang H, Wang Y, Ni Z, Yan Y, Shen Z X, Loh K P, Tang D Y. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Advanced Functional Materials, 2009, 19(19): 3077–3083
https://doi.org/10.1002/adfm.200901007
12 Sun Z, Hasan T, Torrisi F, Popa D, Privitera G, Wang F, Bonaccorso F, Basko D M, Ferrari A C. Graphene mode-locked ultrafast laser. ACS Nano, 2010, 4(2): 803–810
https://doi.org/10.1021/nn901703e pmid: 20099874
13 Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F, Zhang X. A graphene-based broadband optical modulator. Nature, 2011, 474(7349): 64–67
https://doi.org/10.1038/nature10067 pmid: 21552277
14 Yan H, Low T, Zhu W, Wu Y, Freitag M, Li X, Guinea F, Avouris P, Xia F. Damping pathways of mid-infrared plasmons in graphene nanostructures. Nature Photonics, 2013, 7(5): 394–399
https://doi.org/10.1038/nphoton.2013.57
15 Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X, Zettl A, Shen Y R, Wang F. Graphene plasmonics for tunable terahertz metamaterials. Nature Nanotechnology, 2011, 6(10): 630–634
https://doi.org/10.1038/nnano.2011.146 pmid: 21892164
16 Wang Y, Li Z, Wang J, Li J, Lin Y. Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends in Biotechnology, 2011, 29(5): 205–212
https://doi.org/10.1016/j.tibtech.2011.01.008 pmid: 21397350
17 Feng L, Liu Z. Graphene in biomedicine: opportunities and challenges. Nanomedicine, 2011, 6(2): 317–324
https://doi.org/10.2217/nnm.10.158 pmid: 21385134
18 Shen H, Zhang L, Liu M, Zhang Z. Biomedical applications of graphene. Theranostics, 2012, 2(3): 283–294
https://doi.org/10.7150/thno.3642 pmid: 22448195
19 Yang K, Feng L, Shi X, Liu Z. Nano-graphene in biomedicine: theranostic applications. Chemical Society Reviews, 2013, 42(2): 530–547
https://doi.org/10.1039/C2CS35342C pmid: 23059655
20 Wang F, Torrisi F, Jiang Z, Popa D, Hasan T, Sun Z, Cho W, Ferrari A C. Graphene passively Q-switched two-micron fiber lasers. In: Proceedings of Conference of Lasers and Electro-Optics. 2012, 1–2
21 Zhang M, Kelleher E J, Torrisi F, Sun Z, Hasan T, Popa D, Wang F, Ferrari A C, Popov S V, Taylor J R. Tm-doped fiber laser mode-locked by graphene-polymer composite. Optics Express, 2012, 20(22): 25077–25084
https://doi.org/10.1364/OE.20.025077 pmid: 23187274
22 Ma J, Xie G Q, Lv P, Gao W L, Yuan P, Qian L J, Yu H H, Zhang H J, Wang J Y, Tang D Y. Graphene mode-locked femtosecond laser at 2 mm wavelength. Optics Letters, 2012, 37(11): 2085–2087
https://doi.org/10.1364/OL.37.002085 PMID:22660129
23 Lagatsky A A, Sun Z, Kulmala T S, Sundaram R S, Milana S, Torrisi F, Antipov O L, Lee Y, Ahn J H, Brown C T, Sibbett W, Ferrari A C. 2 mm solid-state laser mode-locked by single-layer graphene. Applied Physics Letters, 2013, 102(1): 013113
https://doi.org/10.1063/1.4773990
24 Cizmeciyan M N, Kim J W, Bae S, Hong B H, Rotermund F, Sennaroglu A. Graphene mode-locked femtosecond Cr:ZnSe laser at 2500 nm. Optics Letters, 2013, 38(3): 341–343
https://doi.org/10.1364/OL.38.000341 pmid: 23381431
25 Wang Q, Teng H, Zou Y, Zhang Z, Li D, Wang R, Gao C, Lin J, Guo L, Wei Z. Graphene on SiC as a Q-switcher for a 2 mm laser. Optics Letters, 2012, 37(3): 395–397
https://doi.org/10.1364/OL.37.000395 pmid: 22297364
26 Tolstik N, Okhotnikov O, Sorokin E, Sorokina I T. Femtosecond Cr:ZnS laser at 2.35 µm mode-locked by carbon nanotubes. Proceedings of the Society for Photo-Instrumentation Engineers, 2014, 8959: 89591A
https://doi.org/10.1117/12.2040757
27 Wei C, Zhu X, Wang F, Xu Y, Balakrishnan K, Song F, Norwood R A, Peyghambarian N. Graphene Q-switched 2.78 mm Er3+-doped fluoride fiber laser. Optics Letters, 2013, 38(17): 3233–3236
https://doi.org/10.1364/OL.38.003233 pmid: 23988922
28 Zhu G, Zhu X, Wang F, Xu S, Li Y, Guo X, Balakrishnan K, Norwood R A, Peyghambarian N. Graphene mode-locked fiber laser at 2.8 mm. Photonics Technology Letters, 2016, 28 (1): 7–10
https://doi.org/10.1109/LPT.2015.2478836
29 Mueller T, Xia F, Avouris P. Graphene photodetectors for high-speed optical communications. Nature Photonics, 2010, 4(5): 297–301
https://doi.org/10.1038/nphoton.2010.40
30 Wang X, Cheng Z, Xu K, Tsang H K, Xu J B. High-responsivity graphene/silicon-heterostructure waveguide photodetectors. Nature Photonics, 2013, 7(11): 888–891
https://doi.org/10.1038/nphoton.2013.241
31 Cheng Z, Wang J, Xu K, Tsang H K, Shu C. Graphene on silicon-on-sapphire waveguide photodetectors. In: Proceedings of Laser and Electro-Optics(CLEO), 2015
32 Liu C H, Chang Y C, Norris T B, Zhong Z. Graphene photodetectors with ultra-broadband and high responsivity at room temperature. Nature Nanotechnology, 2014, 9(4): 273–278
https://doi.org/10.1038/nnano.2014.31 pmid: 24633521
33 Zhang B Y, Liu T, Meng B, Li X, Liang G, Hu X, Wang Q J. Broadband high photoresponse from pure monolayer graphene photodetector. Nature Communications, 2013, 4: 1811
https://doi.org/10.1038/ncomms2830 pmid: 23651999
34 Yao Y, Shankar R, Rauter P, Song Y, Kong J, Loncar M, Capasso F. High-responsivity mid-infrared graphene detectors with antenna-enhanced photocarrier generation and collection. Nano Letters, 2014, 14(7): 3749–3754
https://doi.org/10.1021/nl500602n pmid: 24940849
35 Hsu A L, Herring P K, Gabor N M, Ha S, Shin Y C, Song Y, Chin M, Dubey M, Chandrakasan A P, Kong J, Jarillo-Herrero P, Palacios T. Graphene-based thermopile for thermal imaging applications. Nano Letters, 2015, 15(11): 7211–7216
https://doi.org/10.1021/acs.nanolett.5b01755 pmid: 26468687
36 Badioli M, Woessner A, Tielrooij K J, Nanot S, Navickaite G, Stauber T, García de Abajo F J, Koppens F H L. Phonon-mediated mid-infrared photoresponse of graphene. Nano Letters, 2014, 14(11): 6374–6381
https://doi.org/10.1021/nl502847v pmid: 25343323
37 Wang J, Cheng Z, Chen Z, Xu J B, Tsang H K, Shu C. Graphene photodetector integrated on silicon nitride waveguide. Journal of Applied Physics, 2015, 117(14): 144504
https://doi.org/10.1063/1.4917378
38 Yan J, Kim M H, Elle J A, Sushkov A B, Jenkins G S, Milchberg H M, Fuhrer M S, Drew H D. Dual-gated bilayer graphene hot-electron bolometer. Nature Nanotechnology, 2012, 7(7): 472–478
https://doi.org/10.1038/nnano.2012.88 pmid: 22659611
39 Freitag M, Low T, Martin-Moreno L, Zhu W, Guinea F, Avouris P. Substrate-sensitive mid-infrared photoresponse in graphene. ACS Nano, 2014, 8(8): 8350–8356
https://doi.org/10.1021/nn502822z pmid: 25033317
40 Cheng Z, Tsang H K, Wang X, Xu K, Xu J B. In-plane optical absorption and free carrier absorption in graphene-on-silicon waveguides. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(1): 4400106
https://doi.org/10.1109/JSTQE.2013.2263115
41 Cheng Z, Wang J, Zhu B, Xu K, Zhou W, Tsang H K, Shu C. Graphene absorption enhancement using silicon slot waveguides. In: Proceedings of Photonics Conference (IPC) IEEE. 2015, 186–187
42 Wang J, Cheng Z, Shu C, Tsang H K. Optical absorption in graphene-on-silicon nitride microring resonator. IEEE Photonics Technology Letters, 2015, 27(16): 1765–1767
https://doi.org/10.1109/LPT.2015.2443051
43 Cheng Z, Chen X, Wong C Y, Xu K, Fung C K, Chen Y M, Tsang H K. Focusing subwavelength grating coupler for mid-infrared suspended membrane waveguide. Optics Letters, 2012, 37(7): 1217–1219
https://doi.org/10.1364/OL.37.001217 pmid: 22466200
44 Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X, Zettl A, Shen Y R, Wang F. Graphene plasmonics for tunable terahertz metamaterials. Nature Nanotechnology, 2011, 6(10): 630–634
https://doi.org/10.1038/nnano.2011.146 pmid: 21892164
45 Fang Z, Wang Y, Schlather A E, Liu Z, Ajayan P M, de Abajo F J, Nordlander P, Zhu X, Halas N J. Active tunable absorption enhancement with graphene nanodisk arrays. Nano Letters, 2014, 14(1): 299–304
https://doi.org/10.1021/nl404042h pmid: 24320874
46 Brar V W, Jang M S, Sherrott M, Lopez J J, Atwater H A. Highly confined tunable mid-infrared plasmonics in graphene nanoresonators. Nano Letters, 2013, 13(6): 2541–2547
https://doi.org/10.1021/nl400601c pmid: 23621616
47 Abbas A N, Liu G, Liu B, Zhang L, Liu H, Ohlberg D, Wu W, Zhou C. Patterning, characterization, and chemical sensing applications of graphene nanoribbon arrays down to 5 nm using helium ion beam lithography. ACS Nano, 2014, 8(2): 1538–1546
https://doi.org/10.1021/nn405759v pmid: 24467172
48 Li Y, Yan H, Farmer D B, Meng X, Zhu W, Osgood R M, Heinz T F, Avouris P. Graphene plasmon enhanced vibrational sensing of surface-adsorbed layers. Nano Letters, 2014, 14(3): 1573–1577
https://doi.org/10.1021/nl404824w pmid: 24528250
49 Rodrigo D, Limaj O, Janner D, Etezadi D, García de Abajo F J, Pruneri V, Altug H. Mid-infrared plasmonic biosensing with graphene. Science, 2015, 349(6244): 165–168
https://doi.org/10.1126/science.aab2051 pmid: 26160941
50 Loh K P, Bao Q, Eda G, Chhowalla M. Graphene oxide as a chemically tunable platform for optical applications. Nature Chemistry, 2010, 2(12): 1015–1024
https://doi.org/10.1038/nchem.907 pmid: 21107364
51 Sun X, Liu Z, Welsher K, Robinson J T, Goodwin A, Zaric S, Dai H. Nano-graphene oxide for cellular imaging and drug delivery. Nano Research, 2008, 1(3): 203–212
https://doi.org/10.1007/s12274-008-8021-8 pmid: 20216934
52 Feng L, Yang X, Shi X, Tan X, Peng R, Wang J, Liu Z. Polyethylene glycol and polyethylenimine dual-functionalized nano-graphene oxide for photothermally enhanced gene delivery. Small, 2013, 9(11): 1989–1997
https://doi.org/10.1002/smll.201202538 pmid: 23292791
53 Liu K, Zhang J J, Cheng F F, Zheng T T, Wang C, Zhu J J. Green and facile synthesis of highly biocompatible graphene nanosheets and its application for cellular imaging and drug delivery. Journal of Materials Chemistry, 2011, 21(32): 12034–12040
https://doi.org/10.1039/c1jm10749f
54 Tian B, Wang C, Zhang S, Feng L, Liu Z. Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide. ACS Nano, 2011, 5(9): 7000–7009
https://doi.org/10.1021/nn201560b pmid: 21815655
55 Ma X, Tao H, Yang K, Feng L, Cheng L, Shi X, Li Y, Guo L, Liu Z. A functionalized graphene oxide-iron oxide nanocomposite for magnetically targeted drug delivery, photothermal therapy, and magnetic resonance imaging. Nano Research, 2012, 5(3): 199–212
https://doi.org/10.1007/s12274-012-0200-y
56 Yang K, Zhang S, Zhang G, Sun X, Lee S T, Liu Z. Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Letters, 2010, 10(9): 3318–3323
https://doi.org/10.1021/nl100996u pmid: 20684528
57 Huang P, Xu C, Lin J, Wang C, Wang X, Zhang C, Zhou X, Guo S, Cui D. Folic acid-conjugated graphene oxide loaded with photosensitizers for targeting photodynamic therapy. Theranostics, 2011, 1: 240–250
https://doi.org/10.7150/thno/v01p0240 pmid: 21562631
58 Li J L, Hou X L, Bao H C, Sun L, Tang B, Wang J F, Wang X G, Gu M. Graphene oxide nanoparticles for enhanced photothermal cancer cell therapy under the irradiation of a femtosecond laser beam. Journal of Biomedical Materials Research. Part A, 2014, 102(7): 2181–2188
https://doi.org/10.1002/jbm.a.34871 pmid: 23852749
59 Robinson J T, Tabakman S M, Liang Y, Wang H, Casalongue H S, Vinh D, Dai H. Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. Journal of the American Chemical Society, 2011, 133(17): 6825–6831
https://doi.org/10.1021/ja2010175 pmid: 21476500
60 Shi X, Gong H, Li Y, Wang C, Cheng L, Liu Z. Graphene-based magnetic plasmonic nanocomposite for dual bioimaging and photothermal therapy. Biomaterials, 2013, 34(20): 4786–4793
https://doi.org/10.1016/j.biomaterials.2013.03.023 pmid: 23557860
61 Akhavan O, Ghaderi E, Aghayee S, Fereydooni Y, Talebi A. The use of a glucose-reduced graphene oxide suspension for photothermal cancer therapy. Journal of Materials Chemistry, 2012, 22(27): 13773–13781
https://doi.org/10.1039/c2jm31396k
62 Li M, Yang X, Ren J, Qu K, Qu X. Using graphene oxide high near-infrared absorbance for photothermal treatment of Alzheimer’s disease. Advanced Materials, 2012, 24(13): 1722–1728
https://doi.org/10.1002/adma.201104864 pmid: 22407491
63 Yang K, Wan J, Zhang S, Tian B, Zhang Y, Liu Z. The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power. Biomaterials, 2012, 33(7): 2206–2214
https://doi.org/10.1016/j.biomaterials.2011.11.064 pmid: 22169821
64 Markovic Z M, Harhaji-Trajkovic L M, Todorovic-Markovic B M, Kepić D P, Arsikin K M, Jovanović S P, Pantovic A C, Dramićanin M D, Trajkovic V S. In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes. Biomaterials, 2011, 32(4): 1121–1129
https://doi.org/10.1016/j.biomaterials.2010.10.030 pmid: 21071083
65 Li J L, Bao H C, Hou X L, Sun L, Wang X G, Gu M. Graphene oxide nanoparticles as a nonbleaching optical probe for two-photon luminescence imaging and cell therapy. Angewandte Chemie International Edition, 2012, 51(8): 1830–1834
https://doi.org/10.1002/anie.201106102 pmid: 22247035
66 Liu Q, Guo B, Rao Z, Zhang B, Gong J R. Strong two-photon-induced fluorescence from photostable, biocompatible nitrogen-doped graphene quantum dots for cellular and deep-tissue imaging. Nano Letters, 2013, 13(6): 2436–2441
https://doi.org/10.1021/nl400368v pmid: 23675758
67 Qian J, Wang D, Cai F H, Xi W, Peng L, Zhu Z F, He H, Hu M L, He S. Observation of multiphoton-induced fluorescence from graphene oxide nanoparticles and applications in in vivo functional bioimaging. Angewandte Chemie International Edition, 2012, 51(42): 10570–10575
https://doi.org/10.1002/anie.201206107 pmid: 23002009
68 Huang J, Zong C, Shen H, Liu M, Chen B, Ren B, Zhang Z. Mechanism of cellular uptake of graphene oxide studied by surface-enhanced Raman spectroscopy. Small, 2012, 8(16): 2577–2584
https://doi.org/10.1002/smll.201102743 pmid: 22641430
69 Liu Z, Guo Z, Zhong H, Qin X, Wan M, Yang B. Graphene oxide based surface-enhanced Raman scattering probes for cancer cell imaging. Physical Chemistry Chemical Physics, 2013, 15(8): 2961–2966
https://doi.org/10.1039/c2cp43715e pmid: 23340832
70 Yang K, Hu L, Ma X, Ye S, Cheng L, Shi X, Li C, Li Y, Liu Z. Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles. Advanced Materials, 2012, 24(14): 1868–1872
https://doi.org/10.1002/adma.201104964 pmid: 22378564
71 Zaugg C A, Sun Z, Wittwer V J, Popa D, Milana S, Kulmala T S, Sundaram R S, Mangold M, Sieber O D, Golling M, Lee Y, Ahn J H, Ferrari A C, Keller U. Ultrafast and widely tuneable vertical-external-cavity surface-emitting laser, mode-locked by a graphene-integrated distributed Bragg reflector. Optics Express, 2013, 21(25): 31548–31559
https://doi.org/10.1364/OE.21.031548 pmid: 24514728
72 Baylam I, Cizmeciyan M N, Ozharar S, Polat E O, Kocabas C, Sennaroglu A. Femtosecond pulse generation with voltage-controlled graphene saturable absorber. Optics Letters, 2014, 39(17): 5180–5183
https://doi.org/10.1364/OL.39.005180 pmid: 25166104
73 Xia F, Wang H, Xiao D, Dubey M, Ramasubramaniam A. Two-dimensional material nanophotonics. Nature Photonics, 2014, 8(12): 899–907
https://doi.org/10.1038/nphoton.2014.271
74 Qin Z, Xie G, Zhang H, Zhao C, Yuan P, Wen S, Qian L. Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8 mm. Optics Express, 2015, 23(19): 24713–24718
https://doi.org/10.1364/OE.23.024713 pmid: 26406672
75 Youngblood N, Chen C, Koester S J, Li M. Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nature Photonics, 2015, 9(4): 247–252
[1] Tatiana A. SAVELIEVA, Marina N. KURYANOVA, Ekaterina V. AKHLYUSTINA, Kirill G. LINKOV, Gennady A. MEEROVICH, Victor B. LOSCHENOV. Attenuation correction technique for fluorescence analysis of biological tissues with significantly different optical properties[J]. Front. Optoelectron., 2020, 13(4): 360-370.
[2] Dmitry V. YAKOVLEV, Dina S. FARRAKHOVA, Artem A. SHIRYAEV, Kanamat T. EFENDIEV, Maxim V. LOSCHENOV, Liana M. AMIRKHANOVA, Dmitry O. KORNEV, Vladimir V. LEVKIN, Igor V. RESHETOV, Victor B. LOSCHENOV. New approaches to diagnostics and treatment of cholangiocellular cancer based on photonics methods[J]. Front. Optoelectron., 2020, 13(4): 352-359.
[3] Rashad F. KAHWAGI, Sean T. THORNTON, Ben SMITH, Ghada I. KOLEILAT. Dimensionality engineering of metal halide perovskites[J]. Front. Optoelectron., 2020, 13(3): 196-224.
[4] Chuyu ZHONG, Junying LI, Hongtao LIN. Graphene-based all-optical modulators[J]. Front. Optoelectron., 2020, 13(2): 114-128.
[5] Petri MUSTONEN, David M. A. MACKENZIE, Harri LIPSANEN. Review of fabrication methods of large-area transparent graphene electrodes for industry[J]. Front. Optoelectron., 2020, 13(2): 91-113.
[6] Yulan FU, Tianrui ZHAI. Distributed feedback organic lasing in photonic crystals[J]. Front. Optoelectron., 2020, 13(1): 18-34.
[7] Feidi XIANG, Kejia WANG, Zhengang YANG, Jinsong LIU, Shenglie WANG. A direct method to calculate second-order two-dimensional terahertz spectroscopy in frequency-domain based on classical theory[J]. Front. Optoelectron., 2018, 11(4): 413-418.
[8] Tao Pan, Bingren Yan, Jiemei Chen, Lijun Yao. Discrete combination method based on equidistant wavelength screening and its application to near-infrared analysis of hemoglobin[J]. Front. Optoelectron., 2018, 11(3): 296-305.
[9] Chenghong WU, Xinyang MIAO, Kun ZHAO. Identifying PM2.5 samples collected in different environment by using terahertz time-domain spectroscopy[J]. Front. Optoelectron., 2018, 11(3): 256-260.
[10] Zidong ZHANG, Juehan YANG, Fuhong MEI, Guozhen SHEN. Longitudinal twinning α-In2Se3 nanowires for UV-visible-NIR photodetectors with high sensitivity[J]. Front. Optoelectron., 2018, 11(3): 245-255.
[11] Weichong TANG, Zili ZHANG, Ke XIAO, Changchun ZHAO, Zhiyuan ZHENG. Terahertz frequency characterization of anisotropic structure of tourmaline[J]. Front. Optoelectron., 2017, 10(4): 409-413.
[12] Tatiana I. KALGANOVA, Anna G. ORLOVA, German Yu. GOLUBYATNIKOV, Anna V. MASLENNIKOVA, Ilya V. TURCHIN. Dynamic influence of pentoxifylline on the oxygen status of Pliss’s lymph sarcoma in rat[J]. Front. Optoelectron., 2017, 10(3): 317-322.
[13] Ronald SROKA, Nikolas DOMINIK, Max EISEL, Anna ESIPOVA, Christian FREYMÜLLER, Christian HECKL, Georg HENNIG, Christian HOMANN, Nicolas HOEHNE, Robert KAMMERER, Thomas KELLERER, Alexander LANG, Niklas MARKWARDT, Heike POHLA, Thomas PONGRATZ, Claus-Georg SCHMEDT, Herbert STEPP, Stephan STRÖBL, Keerthanan ULAGANATHAN, Wolfgang ZIMMERMANN, Adrian RUEHM. Research and developments of laser assisted methods for translation into clinical application[J]. Front. Optoelectron., 2017, 10(3): 239-254.
[14] Bernd KAMPE, Sandra KLOß, Thomas BOCKLITZ, Petra RÖSCH, Jürgen POPP. Recursive feature elimination in Raman spectra with support vector machines[J]. Front. Optoelectron., 2017, 10(3): 273-279.
[15] E. BORISOVA, Ts. GENOVA, O. SEMYACHKINA-GLUSHKOVSKAYA, N. PENKOV, I. TERZIEV, B. VLADIMIROV. Excitation-emission matrices (EEMs) of colorectal tumors – tool for spectroscopic diagnostics of gastrointestinal neoplasia[J]. Front. Optoelectron., 2017, 10(3): 292-298.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed