|
|
|
Progress on mid-IR graphene photonics and biochemical applications |
Zhenzhou CHENG1,*( ),Changyuan QIN1,Fengqiu WANG2,*( ),Hao HE3,Keisuke GODA1,4,5,*( ) |
1. Department of Chemistry, University of Tokyo, Tokyo 113-0033, Japan 2. School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China 3. Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200031, China 4. Department of Electrical Engineering, University of California, Los Angeles 90095, USA 5. Japan Science and Technology Agency, Tokyo 102-0076, Japan |
|
|
|
|
Abstract Mid-infrared (mid-IR) (2-20 μm) photonics has numerous chemical and biologic “fingerprint” sensing applications due to characteristic vibrational transitions of molecules in the mid-IR spectral region. Unfortunately, compared to visible light and telecommunication band wavelengths, photonic devices and applications have been difficult to develop at mid-IR wavelengths because of the intrinsic limitation of conventional materials. Breaking a new ground in the mid-IR science and technology calls for revolutionary materials. Graphene, a single atom layer of carbon arranged in a honey-comb lattice, has various promising optical and electrical properties because of its linear dispersion band structure and zero band gap features. In this review article, we discuss recent research developments on mid-IR graphene photonics, in particular ultrafast lasers and photodetectors. Graphene-photonics-based biochemical applications, such as plasmonic sensing, photodynamic therapy, and florescence imaging are also reviewed.
|
| Keywords
mid-infrared (mid-IR)
graphene
lasers
photodetectors
optical sensing and sensors
photodynamic therapy
spectroscopy
fluorescence and luminescence
|
|
Corresponding Author(s):
Zhenzhou CHENG,Fengqiu WANG,Keisuke GODA
|
|
Just Accepted Date: 25 February 2016
Online First Date: 31 March 2016
Issue Date: 05 April 2016
|
|
| 1 |
Schliesser A, Picqué N, Hänsch T W. Mid-infrared frequency combs. Nature Photonics, 2012, 6(7): 440–449
https://doi.org/10.1038/nphoton.2012.142
|
| 2 |
Jackson S D. Towards high-power mid-infrared emission from a fibre laser. Nature Photonics, 2012, 6(7): 423–431
https://doi.org/10.1038/nphoton.2012.149
|
| 3 |
Martinez A, Sun Z. Nanotube and graphene saturable absorbers for fire lasers. Nature Photonics, 2013, 7(11): 842–845
https://doi.org/10.1038/nphoton.2013.304
|
| 4 |
Keuleyan S, Lhuillier E, Brajuskovic V, Guyot-Sionnest P. Mid-infrared HgTe colloidal quantum dot photodetectors. Nature Photonics, 2011, 5(8): 489–493
https://doi.org/10.1038/nphoton.2011.142
|
| 5 |
Novoselv K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Electric field effect in atomically thin carbon films. Science, 2004 , 306(5696): 666–669
|
| 6 |
Bonaccorso F, Sun Z, Hasan T, Ferrari A C. Graphene photonics and optoelectronics. Nature Photonics, 2010, 4(9): 611–622
https://doi.org/10.1038/nphoton.2010.186
|
| 7 |
Xia F, Yan H, Avouris P. The interaction of light and graphene: basics, devices, and applications. Proceedings of the IEEE, 2013, 101(7): 1717–1731
https://doi.org/10.1109/JPROC.2013.2250892
|
| 8 |
Ostojic G N, Zaric S, Kono J, Strano M S, Moore V C, Hauge R H, Smalley R E. Interband recombination dynamics in resonantly excited single-walled carbon nanotubes. Physical Review Letters, 2004, 92(11): 117402
https://doi.org/10.1103/PhysRevLett.92.117402
pmid: 15089165
|
| 9 |
Dawlaty J M, Shivaraman S, Chandrashekhar M, Rana F, Spencer M G. Measurement of ultrafast carrier dynamics in epitaxial graphene. Applied Physics Letters, 2008, 92(4): 042116
https://doi.org/10.1063/1.2837539
|
| 10 |
Hasan T, Sun Z, Wang F, Bonaccorso F, Tan P H, Rozhin A G, Ferrari A C. Nanotube polymer composites for ultrafast photonics. Advanced Materials, 2009, 21(38-39): 3874–3899
https://doi.org/10.1002/adma.200901122
|
| 11 |
Bao Q, Zhang H, Wang Y, Ni Z, Yan Y, Shen Z X, Loh K P, Tang D Y. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Advanced Functional Materials, 2009, 19(19): 3077–3083
https://doi.org/10.1002/adfm.200901007
|
| 12 |
Sun Z, Hasan T, Torrisi F, Popa D, Privitera G, Wang F, Bonaccorso F, Basko D M, Ferrari A C. Graphene mode-locked ultrafast laser. ACS Nano, 2010, 4(2): 803–810
https://doi.org/10.1021/nn901703e
pmid: 20099874
|
| 13 |
Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F, Zhang X. A graphene-based broadband optical modulator. Nature, 2011, 474(7349): 64–67
https://doi.org/10.1038/nature10067
pmid: 21552277
|
| 14 |
Yan H, Low T, Zhu W, Wu Y, Freitag M, Li X, Guinea F, Avouris P, Xia F. Damping pathways of mid-infrared plasmons in graphene nanostructures. Nature Photonics, 2013, 7(5): 394–399
https://doi.org/10.1038/nphoton.2013.57
|
| 15 |
Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X, Zettl A, Shen Y R, Wang F. Graphene plasmonics for tunable terahertz metamaterials. Nature Nanotechnology, 2011, 6(10): 630–634
https://doi.org/10.1038/nnano.2011.146
pmid: 21892164
|
| 16 |
Wang Y, Li Z, Wang J, Li J, Lin Y. Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends in Biotechnology, 2011, 29(5): 205–212
https://doi.org/10.1016/j.tibtech.2011.01.008
pmid: 21397350
|
| 17 |
Feng L, Liu Z. Graphene in biomedicine: opportunities and challenges. Nanomedicine, 2011, 6(2): 317–324
https://doi.org/10.2217/nnm.10.158
pmid: 21385134
|
| 18 |
Shen H, Zhang L, Liu M, Zhang Z. Biomedical applications of graphene. Theranostics, 2012, 2(3): 283–294
https://doi.org/10.7150/thno.3642
pmid: 22448195
|
| 19 |
Yang K, Feng L, Shi X, Liu Z. Nano-graphene in biomedicine: theranostic applications. Chemical Society Reviews, 2013, 42(2): 530–547
https://doi.org/10.1039/C2CS35342C
pmid: 23059655
|
| 20 |
Wang F, Torrisi F, Jiang Z, Popa D, Hasan T, Sun Z, Cho W, Ferrari A C. Graphene passively Q-switched two-micron fiber lasers. In: Proceedings of Conference of Lasers and Electro-Optics. 2012, 1–2
|
| 21 |
Zhang M, Kelleher E J, Torrisi F, Sun Z, Hasan T, Popa D, Wang F, Ferrari A C, Popov S V, Taylor J R. Tm-doped fiber laser mode-locked by graphene-polymer composite. Optics Express, 2012, 20(22): 25077–25084
https://doi.org/10.1364/OE.20.025077
pmid: 23187274
|
| 22 |
Ma J, Xie G Q, Lv P, Gao W L, Yuan P, Qian L J, Yu H H, Zhang H J, Wang J Y, Tang D Y. Graphene mode-locked femtosecond laser at 2 mm wavelength. Optics Letters, 2012, 37(11): 2085–2087
https://doi.org/10.1364/OL.37.002085 PMID:22660129
|
| 23 |
Lagatsky A A, Sun Z, Kulmala T S, Sundaram R S, Milana S, Torrisi F, Antipov O L, Lee Y, Ahn J H, Brown C T, Sibbett W, Ferrari A C. 2 mm solid-state laser mode-locked by single-layer graphene. Applied Physics Letters, 2013, 102(1): 013113
https://doi.org/10.1063/1.4773990
|
| 24 |
Cizmeciyan M N, Kim J W, Bae S, Hong B H, Rotermund F, Sennaroglu A. Graphene mode-locked femtosecond Cr:ZnSe laser at 2500 nm. Optics Letters, 2013, 38(3): 341–343
https://doi.org/10.1364/OL.38.000341
pmid: 23381431
|
| 25 |
Wang Q, Teng H, Zou Y, Zhang Z, Li D, Wang R, Gao C, Lin J, Guo L, Wei Z. Graphene on SiC as a Q-switcher for a 2 mm laser. Optics Letters, 2012, 37(3): 395–397
https://doi.org/10.1364/OL.37.000395
pmid: 22297364
|
| 26 |
Tolstik N, Okhotnikov O, Sorokin E, Sorokina I T. Femtosecond Cr:ZnS laser at 2.35 µm mode-locked by carbon nanotubes. Proceedings of the Society for Photo-Instrumentation Engineers, 2014, 8959: 89591A
https://doi.org/10.1117/12.2040757
|
| 27 |
Wei C, Zhu X, Wang F, Xu Y, Balakrishnan K, Song F, Norwood R A, Peyghambarian N. Graphene Q-switched 2.78 mm Er3+-doped fluoride fiber laser. Optics Letters, 2013, 38(17): 3233–3236
https://doi.org/10.1364/OL.38.003233
pmid: 23988922
|
| 28 |
Zhu G, Zhu X, Wang F, Xu S, Li Y, Guo X, Balakrishnan K, Norwood R A, Peyghambarian N. Graphene mode-locked fiber laser at 2.8 mm. Photonics Technology Letters, 2016, 28 (1): 7–10
https://doi.org/10.1109/LPT.2015.2478836
|
| 29 |
Mueller T, Xia F, Avouris P. Graphene photodetectors for high-speed optical communications. Nature Photonics, 2010, 4(5): 297–301
https://doi.org/10.1038/nphoton.2010.40
|
| 30 |
Wang X, Cheng Z, Xu K, Tsang H K, Xu J B. High-responsivity graphene/silicon-heterostructure waveguide photodetectors. Nature Photonics, 2013, 7(11): 888–891
https://doi.org/10.1038/nphoton.2013.241
|
| 31 |
Cheng Z, Wang J, Xu K, Tsang H K, Shu C. Graphene on silicon-on-sapphire waveguide photodetectors. In: Proceedings of Laser and Electro-Optics(CLEO), 2015
|
| 32 |
Liu C H, Chang Y C, Norris T B, Zhong Z. Graphene photodetectors with ultra-broadband and high responsivity at room temperature. Nature Nanotechnology, 2014, 9(4): 273–278
https://doi.org/10.1038/nnano.2014.31
pmid: 24633521
|
| 33 |
Zhang B Y, Liu T, Meng B, Li X, Liang G, Hu X, Wang Q J. Broadband high photoresponse from pure monolayer graphene photodetector. Nature Communications, 2013, 4: 1811
https://doi.org/10.1038/ncomms2830
pmid: 23651999
|
| 34 |
Yao Y, Shankar R, Rauter P, Song Y, Kong J, Loncar M, Capasso F. High-responsivity mid-infrared graphene detectors with antenna-enhanced photocarrier generation and collection. Nano Letters, 2014, 14(7): 3749–3754
https://doi.org/10.1021/nl500602n
pmid: 24940849
|
| 35 |
Hsu A L, Herring P K, Gabor N M, Ha S, Shin Y C, Song Y, Chin M, Dubey M, Chandrakasan A P, Kong J, Jarillo-Herrero P, Palacios T. Graphene-based thermopile for thermal imaging applications. Nano Letters, 2015, 15(11): 7211–7216
https://doi.org/10.1021/acs.nanolett.5b01755
pmid: 26468687
|
| 36 |
Badioli M, Woessner A, Tielrooij K J, Nanot S, Navickaite G, Stauber T, García de Abajo F J, Koppens F H L. Phonon-mediated mid-infrared photoresponse of graphene. Nano Letters, 2014, 14(11): 6374–6381
https://doi.org/10.1021/nl502847v
pmid: 25343323
|
| 37 |
Wang J, Cheng Z, Chen Z, Xu J B, Tsang H K, Shu C. Graphene photodetector integrated on silicon nitride waveguide. Journal of Applied Physics, 2015, 117(14): 144504
https://doi.org/10.1063/1.4917378
|
| 38 |
Yan J, Kim M H, Elle J A, Sushkov A B, Jenkins G S, Milchberg H M, Fuhrer M S, Drew H D. Dual-gated bilayer graphene hot-electron bolometer. Nature Nanotechnology, 2012, 7(7): 472–478
https://doi.org/10.1038/nnano.2012.88
pmid: 22659611
|
| 39 |
Freitag M, Low T, Martin-Moreno L, Zhu W, Guinea F, Avouris P. Substrate-sensitive mid-infrared photoresponse in graphene. ACS Nano, 2014, 8(8): 8350–8356
https://doi.org/10.1021/nn502822z
pmid: 25033317
|
| 40 |
Cheng Z, Tsang H K, Wang X, Xu K, Xu J B. In-plane optical absorption and free carrier absorption in graphene-on-silicon waveguides. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(1): 4400106
https://doi.org/10.1109/JSTQE.2013.2263115
|
| 41 |
Cheng Z, Wang J, Zhu B, Xu K, Zhou W, Tsang H K, Shu C. Graphene absorption enhancement using silicon slot waveguides. In: Proceedings of Photonics Conference (IPC) IEEE. 2015, 186–187
|
| 42 |
Wang J, Cheng Z, Shu C, Tsang H K. Optical absorption in graphene-on-silicon nitride microring resonator. IEEE Photonics Technology Letters, 2015, 27(16): 1765–1767
https://doi.org/10.1109/LPT.2015.2443051
|
| 43 |
Cheng Z, Chen X, Wong C Y, Xu K, Fung C K, Chen Y M, Tsang H K. Focusing subwavelength grating coupler for mid-infrared suspended membrane waveguide. Optics Letters, 2012, 37(7): 1217–1219
https://doi.org/10.1364/OL.37.001217
pmid: 22466200
|
| 44 |
Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X, Zettl A, Shen Y R, Wang F. Graphene plasmonics for tunable terahertz metamaterials. Nature Nanotechnology, 2011, 6(10): 630–634
https://doi.org/10.1038/nnano.2011.146
pmid: 21892164
|
| 45 |
Fang Z, Wang Y, Schlather A E, Liu Z, Ajayan P M, de Abajo F J, Nordlander P, Zhu X, Halas N J. Active tunable absorption enhancement with graphene nanodisk arrays. Nano Letters, 2014, 14(1): 299–304
https://doi.org/10.1021/nl404042h
pmid: 24320874
|
| 46 |
Brar V W, Jang M S, Sherrott M, Lopez J J, Atwater H A. Highly confined tunable mid-infrared plasmonics in graphene nanoresonators. Nano Letters, 2013, 13(6): 2541–2547
https://doi.org/10.1021/nl400601c
pmid: 23621616
|
| 47 |
Abbas A N, Liu G, Liu B, Zhang L, Liu H, Ohlberg D, Wu W, Zhou C. Patterning, characterization, and chemical sensing applications of graphene nanoribbon arrays down to 5 nm using helium ion beam lithography. ACS Nano, 2014, 8(2): 1538–1546
https://doi.org/10.1021/nn405759v
pmid: 24467172
|
| 48 |
Li Y, Yan H, Farmer D B, Meng X, Zhu W, Osgood R M, Heinz T F, Avouris P. Graphene plasmon enhanced vibrational sensing of surface-adsorbed layers. Nano Letters, 2014, 14(3): 1573–1577
https://doi.org/10.1021/nl404824w
pmid: 24528250
|
| 49 |
Rodrigo D, Limaj O, Janner D, Etezadi D, García de Abajo F J, Pruneri V, Altug H. Mid-infrared plasmonic biosensing with graphene. Science, 2015, 349(6244): 165–168
https://doi.org/10.1126/science.aab2051
pmid: 26160941
|
| 50 |
Loh K P, Bao Q, Eda G, Chhowalla M. Graphene oxide as a chemically tunable platform for optical applications. Nature Chemistry, 2010, 2(12): 1015–1024
https://doi.org/10.1038/nchem.907
pmid: 21107364
|
| 51 |
Sun X, Liu Z, Welsher K, Robinson J T, Goodwin A, Zaric S, Dai H. Nano-graphene oxide for cellular imaging and drug delivery. Nano Research, 2008, 1(3): 203–212
https://doi.org/10.1007/s12274-008-8021-8
pmid: 20216934
|
| 52 |
Feng L, Yang X, Shi X, Tan X, Peng R, Wang J, Liu Z. Polyethylene glycol and polyethylenimine dual-functionalized nano-graphene oxide for photothermally enhanced gene delivery. Small, 2013, 9(11): 1989–1997
https://doi.org/10.1002/smll.201202538
pmid: 23292791
|
| 53 |
Liu K, Zhang J J, Cheng F F, Zheng T T, Wang C, Zhu J J. Green and facile synthesis of highly biocompatible graphene nanosheets and its application for cellular imaging and drug delivery. Journal of Materials Chemistry, 2011, 21(32): 12034–12040
https://doi.org/10.1039/c1jm10749f
|
| 54 |
Tian B, Wang C, Zhang S, Feng L, Liu Z. Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide. ACS Nano, 2011, 5(9): 7000–7009
https://doi.org/10.1021/nn201560b
pmid: 21815655
|
| 55 |
Ma X, Tao H, Yang K, Feng L, Cheng L, Shi X, Li Y, Guo L, Liu Z. A functionalized graphene oxide-iron oxide nanocomposite for magnetically targeted drug delivery, photothermal therapy, and magnetic resonance imaging. Nano Research, 2012, 5(3): 199–212
https://doi.org/10.1007/s12274-012-0200-y
|
| 56 |
Yang K, Zhang S, Zhang G, Sun X, Lee S T, Liu Z. Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Letters, 2010, 10(9): 3318–3323
https://doi.org/10.1021/nl100996u
pmid: 20684528
|
| 57 |
Huang P, Xu C, Lin J, Wang C, Wang X, Zhang C, Zhou X, Guo S, Cui D. Folic acid-conjugated graphene oxide loaded with photosensitizers for targeting photodynamic therapy. Theranostics, 2011, 1: 240–250
https://doi.org/10.7150/thno/v01p0240
pmid: 21562631
|
| 58 |
Li J L, Hou X L, Bao H C, Sun L, Tang B, Wang J F, Wang X G, Gu M. Graphene oxide nanoparticles for enhanced photothermal cancer cell therapy under the irradiation of a femtosecond laser beam. Journal of Biomedical Materials Research. Part A, 2014, 102(7): 2181–2188
https://doi.org/10.1002/jbm.a.34871
pmid: 23852749
|
| 59 |
Robinson J T, Tabakman S M, Liang Y, Wang H, Casalongue H S, Vinh D, Dai H. Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. Journal of the American Chemical Society, 2011, 133(17): 6825–6831
https://doi.org/10.1021/ja2010175
pmid: 21476500
|
| 60 |
Shi X, Gong H, Li Y, Wang C, Cheng L, Liu Z. Graphene-based magnetic plasmonic nanocomposite for dual bioimaging and photothermal therapy. Biomaterials, 2013, 34(20): 4786–4793
https://doi.org/10.1016/j.biomaterials.2013.03.023
pmid: 23557860
|
| 61 |
Akhavan O, Ghaderi E, Aghayee S, Fereydooni Y, Talebi A. The use of a glucose-reduced graphene oxide suspension for photothermal cancer therapy. Journal of Materials Chemistry, 2012, 22(27): 13773–13781
https://doi.org/10.1039/c2jm31396k
|
| 62 |
Li M, Yang X, Ren J, Qu K, Qu X. Using graphene oxide high near-infrared absorbance for photothermal treatment of Alzheimer’s disease. Advanced Materials, 2012, 24(13): 1722–1728
https://doi.org/10.1002/adma.201104864
pmid: 22407491
|
| 63 |
Yang K, Wan J, Zhang S, Tian B, Zhang Y, Liu Z. The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power. Biomaterials, 2012, 33(7): 2206–2214
https://doi.org/10.1016/j.biomaterials.2011.11.064
pmid: 22169821
|
| 64 |
Markovic Z M, Harhaji-Trajkovic L M, Todorovic-Markovic B M, Kepić D P, Arsikin K M, Jovanović S P, Pantovic A C, Dramićanin M D, Trajkovic V S. In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes. Biomaterials, 2011, 32(4): 1121–1129
https://doi.org/10.1016/j.biomaterials.2010.10.030
pmid: 21071083
|
| 65 |
Li J L, Bao H C, Hou X L, Sun L, Wang X G, Gu M. Graphene oxide nanoparticles as a nonbleaching optical probe for two-photon luminescence imaging and cell therapy. Angewandte Chemie International Edition, 2012, 51(8): 1830–1834
https://doi.org/10.1002/anie.201106102
pmid: 22247035
|
| 66 |
Liu Q, Guo B, Rao Z, Zhang B, Gong J R. Strong two-photon-induced fluorescence from photostable, biocompatible nitrogen-doped graphene quantum dots for cellular and deep-tissue imaging. Nano Letters, 2013, 13(6): 2436–2441
https://doi.org/10.1021/nl400368v
pmid: 23675758
|
| 67 |
Qian J, Wang D, Cai F H, Xi W, Peng L, Zhu Z F, He H, Hu M L, He S. Observation of multiphoton-induced fluorescence from graphene oxide nanoparticles and applications in in vivo functional bioimaging. Angewandte Chemie International Edition, 2012, 51(42): 10570–10575
https://doi.org/10.1002/anie.201206107
pmid: 23002009
|
| 68 |
Huang J, Zong C, Shen H, Liu M, Chen B, Ren B, Zhang Z. Mechanism of cellular uptake of graphene oxide studied by surface-enhanced Raman spectroscopy. Small, 2012, 8(16): 2577–2584
https://doi.org/10.1002/smll.201102743
pmid: 22641430
|
| 69 |
Liu Z, Guo Z, Zhong H, Qin X, Wan M, Yang B. Graphene oxide based surface-enhanced Raman scattering probes for cancer cell imaging. Physical Chemistry Chemical Physics, 2013, 15(8): 2961–2966
https://doi.org/10.1039/c2cp43715e
pmid: 23340832
|
| 70 |
Yang K, Hu L, Ma X, Ye S, Cheng L, Shi X, Li C, Li Y, Liu Z. Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles. Advanced Materials, 2012, 24(14): 1868–1872
https://doi.org/10.1002/adma.201104964
pmid: 22378564
|
| 71 |
Zaugg C A, Sun Z, Wittwer V J, Popa D, Milana S, Kulmala T S, Sundaram R S, Mangold M, Sieber O D, Golling M, Lee Y, Ahn J H, Ferrari A C, Keller U. Ultrafast and widely tuneable vertical-external-cavity surface-emitting laser, mode-locked by a graphene-integrated distributed Bragg reflector. Optics Express, 2013, 21(25): 31548–31559
https://doi.org/10.1364/OE.21.031548
pmid: 24514728
|
| 72 |
Baylam I, Cizmeciyan M N, Ozharar S, Polat E O, Kocabas C, Sennaroglu A. Femtosecond pulse generation with voltage-controlled graphene saturable absorber. Optics Letters, 2014, 39(17): 5180–5183
https://doi.org/10.1364/OL.39.005180
pmid: 25166104
|
| 73 |
Xia F, Wang H, Xiao D, Dubey M, Ramasubramaniam A. Two-dimensional material nanophotonics. Nature Photonics, 2014, 8(12): 899–907
https://doi.org/10.1038/nphoton.2014.271
|
| 74 |
Qin Z, Xie G, Zhang H, Zhao C, Yuan P, Wen S, Qian L. Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8 mm. Optics Express, 2015, 23(19): 24713–24718
https://doi.org/10.1364/OE.23.024713
pmid: 26406672
|
| 75 |
Youngblood N, Chen C, Koester S J, Li M. Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nature Photonics, 2015, 9(4): 247–252
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|