Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2016, Vol. 9 Issue (2) : 194-205    https://doi.org/10.1007/s12200-016-0623-2
REVIEW ARTICLE
Manipulating optical vortices using integrated photonics
Ning ZHANG1,Kenan CICEK1,Jiangbo ZHU1,Shimao LI2,Huanlu LI3,Marc SOREL3,Xinlun CAI2,*(),Siyuan YU1,2,*()
1. Photonics Group, University of Bristol, Bristol BS8 1UB, UK
2. State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
3. School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
 Download: PDF(1350 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Optical vortices (OVs) refer to a class of cylindrical optical modes with azimuthally varying phase terms arising either from polarization rotation or from the angular projection of the wave vector that at the quantum level corresponds to photon spin or orbital angular momenta. OVs have attracted the attention of researchers in many areas of optics and photonics, as their potential applications range from optical communications, optical manipulation, imaging, sensing, to quantum information. In recent years, integrated photonics has becomes an effective method of manipulating OVs. In this paper, the theoretical framework and experimental progress of integrated photonics for the manipulation of OVs were reviewed.

Keywords optical vortex      orbital angular momentum      angular grating      micro-ring resonator     
Corresponding Author(s): Xinlun CAI,Siyuan YU   
Just Accepted Date: 22 March 2016   Online First Date: 28 March 2016    Issue Date: 05 April 2016
 Cite this article:   
Ning ZHANG,Kenan CICEK,Jiangbo ZHU, et al. Manipulating optical vortices using integrated photonics[J]. Front. Optoelectron., 2016, 9(2): 194-205.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-016-0623-2
https://academic.hep.com.cn/foe/EN/Y2016/V9/I2/194
Fig.1  Considered cylindrical coordinates
Fig.2  Integrated OV beam emitter [32]. (a) Structure of the OV emitter with input bus waveguide not shown for simplicity; (b) radiation spectrum of the OV emitter
Fig.3  Integrated OV beam receiver. (a) Layout of the receiving process; (b) experimental result of the OV beam receiver. An LHCP OV beam incidents the receiver and the received energy is collected at the CW port
Fig.4  Efficiency-optimised OV beam emitter. (a) Structure of the optimised device; (b) radiation spectrum comparison
Fig.5  Efficiency- and near-field-optimised OV beam emitter. (a) Relationship between grating duty ratio and its radiation efficiency; (b) grating duty ratio in the optimised device; (c) near-field intensity distribution comparison
Fig.6  OV beam emitter that can generate superposition OAM states. (a) Concept of superimposed gratings; (b) radiation spectra of OV beams emitted from two- and three-beat gratings emitters
Fig.7  W-shaped OV beam emitter. (a) Schematic figure of the W-shaped emitter; (b) relationship between SMSR and notch angle; (c) measured SMSR from a fabricated device; (d) schematic figure and micrograph of the W-shaped OAM multiplexer
Fig.8  OAM multiplexer. (a) Structure of the multiplexer; (b) radiation spectra of the fundamental and second-order modes from input port CH1 and CH2, respectively
Fig.9  Structure of a VCSEL OV emitter integrated with SPP [49]
1 Poynting J H. The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light. Proceedings of the Royal Society of London, Series A, Containing Papers of a Mathematical and Physical Character, 1909, 82(557): 560–567
https://doi.org/10.1098/rspa.1909.0060
2 Beth R A. Mechanical detection and measurement of the angular momentum of light. Physical Review, 1936, 50(2): 115–125
https://doi.org/10.1103/PhysRev.50.115
3 Allen L, Beijersbergen M W, Spreeuw R J, Woerdman J P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Physical Review A., 1992, 45(11): 8185–8189
https://doi.org/10.1103/PhysRevA.45.8185 pmid: 9906912
4 Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y, Yue Y, Dolinar S, Tur M, Willner A E. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nature Photonics, 2012, 6(7): 488–496
https://doi.org/10.1038/nphoton.2012.138
5 Bozinovic N, Yue Y, Ren Y, Tur M, Kristensen P, Huang H, Willner A E, Ramachandran S. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science, 2013, 340(6140): 1545–1548
https://doi.org/10.1126/science.1237861 pmid: 23812709
6 Wang J, Liu J, Lv X, Zhu L, Wang D, Li S, Wang A, Zhao Y, Long Y, Du J, Hu X, Zhou N, Chen S, Fang L, Zhang F. Ultra-high 435-bit/s/Hz spectral efficiency using N-dimentional multiplexing and modulation link with pol-muxed 52 orbital angular momentum (OAM) modes carrying Nyquist 32-QAM signals. In: Proceedings of European Conference on Optical Communication (ECOC), 2015
7 Shu J, Chen Z, Pu J, Zhu J, Liu D. Tight focusing of partially coherent and radiallly polarized vortex beams. Optics Communications, 2013, 295(10): 5–10
https://doi.org/10.1016/j.optcom.2012.12.055
8 Edfors O, Johansson A J. Is orbital angular momentum (OAM) based radio communication an unexploited area? IEEE Transactions on Antennas & Propagation, 2012, 60(2): 1126–1131
https://doi.org/10.1109/TAP.2011.2173142
9 Brunet C, Vaity P, Messaddeq Y, LaRochelle S, Rusch L A. Design, fabrication and validation of an OAM fiber supporting 36 states. Optics Express, 2014, 22(21): 26117–26127
https://doi.org/10.1364/OE.22.026117 pmid: 25401644
10 Ung B, Vaity P, Wang L, Messaddeq Y, Rusch L A, LaRochelle S. Few-mode fiber with inverse-parabolic graded-index profile for transmission of OAM-carrying modes. Optics Express, 2014, 22(15): 18044–18055
https://doi.org/10.1364/OE.22.018044 pmid: 25089424
11 Padgett M J, Allen L. The angular momentum of light: optical spanners and the rotational frequency shift. Optical and Quantum Electronics, 1999, 31(1): 1–12
https://doi.org/10.1023/A:1006911428303
12 Ding D S, Zhang W, Zhou Z Y, Shi S, Xiang G Y, Wang X S, Jiang Y K, Shi B S, Guo G C. Quantum storage of orbital angular momentum entanglement in an atomic ensemble. Physical Review Letters, 2015, 114(5): 050502-1–050502-5
https://doi.org/10.1103/PhysRevLett.114.050502 pmid: 25699427
13 Han Y J, Liao G Q, Chen L M, Li Y T, Wang W M, Zhang J. High-order optical vortex harmonics generated by relativistic femtosecond laser pulse. Chinese Physics B, 2015, 24(6): 065202
https://doi.org/10.1088/1674-1056/24/6/065202
14 Gibson G, Courtial J, Padgett M, Vasnetsov M, Pas’ko V, Barnett S, Franke-Arnold S. Free-space information transfer using light beams carrying orbital angular momentum. Optics Express, 2004, 12(22): 5448–5456
https://doi.org/10.1364/OPEX.12.005448 pmid: 19484105
15 Heckenberg N R, McDuff R, Smith C P, White A G. Generation of optical phase singularities by computer-generated holograms. Optics Letters, 1992, 17(3): 221–223
https://doi.org/10.1364/OL.17.000221 pmid: 19784282
16 Beijersbergen M W, Coerwinkel R P C, Kristensen M, Woerdman J P. Helical-wavefront laser beams produced with a spiral phaseplate. Optics Communications, 1994, 112(5-6): 321–327
https://doi.org/10.1016/0030-4018(94)90638-6
17 Marrucci L, Manzo C, Paparo D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Physical Review Letters, 2006, 96(16): 163905-1–163905-4
https://doi.org/10.1103/PhysRevLett.96.163905 pmid: 16712234
18 Biener G, Niv A, Kleiner V, Hasman E. Formation of helical beams by use of Pancharatnam-Berry phase optical elements. Optics Letters, 2002, 27(21): 1875–1877
https://doi.org/10.1364/OL.27.001875 pmid: 18033387
19 Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 2011, 334(6054): 333–337
https://doi.org/10.1126/science.1210713 pmid: 21885733
20 Snyder A W, Love J D. Optical Waveguide Theory. Berlin: Springer, 1983, 12(3): 1–37
21 Wu C, Makino T, Glinski J, Maciejko R, Najafi S I. Self-consistent coupled-wave theory for circular gratings on planar dielectric waveguides. Journal of Lightwave Technology, 1991, 9(10): 1264–1277
22 Jordan R H, Hall D G, King O, Wicks G, Rishton S. Lasing behavior of circular grating surface-emitting semiconductor lasers. Journal of the Optical Society of America B, 1997, 14(2):449–453
https://doi.org/10.1364/JOSAB.14.000449
23 Barlow G F, Shore A, Turnbull G A, Samuel I. Design and analysis of a low-threshold polymer circular-grating distributed-feedback laser. Journal of the Optical Society of America B, 2004, 21(12): 2142–2150
https://doi.org/10.1364/JOSAB.21.002142
24 Scheuer J, Green W M, DeRose G A, Yariv A. Lasing from a circular Bragg nanocavity with an ultrasmall modal volume. Applied Physics Letters, 2005, 86(25): 251101-1–251101-3
https://doi.org/10.1063/1.1947375
25 Scheuer J, Green W M, Derose G A, Yariv A. InGaAsP annular Bragg lasers: theory, applications, and modal properties. IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11(2): 476–484
26 Doerr C R, Buhl L L. Circular grating coupler for creating focused azimuthally and radially polarized beams. Optics Letters, 2011, 36(7): 1209–1211
https://doi.org/10.1364/OL.36.001209 pmid: 21479032
27 Scheuer J. Radial Bragg lasers: optimal design for minimal threshold levels and enhanced mode discrimination. Journal of the Optical Society of America B, 2007, 24(9): 2178–2184
https://doi.org/10.1364/JOSAB.24.002178
28 Liang G, Liang H, Zhang Y, Li L, Davies A G, Linfield E, Yu S F, Liu H C, Wang Q J. Low divergence single-mode surface-emitting concentric-circular-grating terahertz quantum cascade lasers . Optics Express, 2013, 21(26): 31872–31882
https://doi.org/10.1364/OE.21.031872 pmid: 24514783
29 Fujita M, Baba T. Microgear laser. Applied Physics Letters, 2002, 80(12): 2051–2053
https://doi.org/10.1063/1.1462867
30 Zhang Z, Dainese M, Wosinski L, Qiu M. Resonance-splitting and enhanced notch depth in SOI ring resonators with mutual mode coupling. Optics Express, 2008, 16(7): 4621–4630
https://doi.org/10.1364/OE.16.004621 pmid: 18542560
31 Arbabi A, Goddard L L. Grating assisted mode coupling in microring resonators. In: Proceedings of IEEE Photonics Conference (IPC). 2013, 434–435
32 Cai X, Wang J, Strain M J, Johnson-Morris B, Zhu J, Sorel M, O’Brien J L, Thompson M G, Yu S. Integrated compact optical vortex beam emitters. Science, 2012, 338(6105): 363–366
https://doi.org/10.1126/science.1226528 pmid: 23087243
33 Greene P L, Hall D G. Effects of radiation on circular-grating DFB lasers I. coupled-mode equations. IEEE Journal of Quantum Electronics,2001, 37(3): 353–364
https://doi.org/10.1109/3.910443
34 Huy K P, Morand A, Amans D, Benech P. Analytical study of the whispering-gallery mode in two-dimensional microgear cavity using coupled-mode theory. Journal of the Optical Society of America B, 2005, 22(8): 1793–1803
https://doi.org/10.1364/JOSAB.22.001793
35 Sun X, Yariv A. Modal properties and modal control in vertically emitting annular Bragg lasers. Optics Express, 2007, 15(25): 17323–17333
https://doi.org/10.1364/OE.15.017323 pmid: 19551026
36 Fujita M, Baba T. Proposal and finite-difference time-domain simulation of whispering gallery mode microgear cavity. IEEE Journal of Quantum Electronics, 2001, 37(10): 1253–1258
https://doi.org/10.1109/3.952536
37 Zhu J, Cai X, Chen Y, Yu S. Theoretical model for angular grating-based integrated optical vortex beam emitters. Optics Letters, 2013, 38(8): 1343–1345
https://doi.org/10.1364/OL.38.001343 pmid: 23595479
38 Yu S, Cai X, Zhang N. High index contrast integrated optics in the cylindrical coordinate. In: Proceeding of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 2015
39 Streifer W, Scifres D R, Burnham R D. Analysis of grating-coupled radiation in GaAs:GaAlAs lasers and Waveguides-I. IEEE Journal of Quantum Electronics, 1976, 12(7): 422–428
https://doi.org/10.1109/JQE.1976.1069175
40 Streifer W, Burnham R D, Scifres D R. Analysis of grating-coupled radiation in GaAs: GaAIAs lasers and waveguides II. blazing effects. IEEE Journal of Quantum Electronics, 1976, 12(8): 494–499
https://doi.org/10.1109/JQE.1976.1069201
41 Streifer W, Scifres D R, Burnham R D. Coupled wave analysis of DFB and DBR lasers. IEEE Journal of Quantum Electronics, 1977, 13(4): 134–141
https://doi.org/10.1109/JQE.1977.1069328
42 Hardy A, Welch D F, Streifer W. Analysis of second-order gratings. IEEE Journal of Quantum Electronics, 1989, 25(10): 2096–2105
https://doi.org/10.1109/3.35721
43 Watson G N. A treatise on the theory of Bessel functions. Nature, 1945, (3955):190–191
44 Strain M J, Cai X, Wang J, Zhu J, Phillips D B, Chen L, Lopez-Garcia M, O’Brien J L, Thompson M G, Sorel M, Yu S. Fast electrical switching of orbital angular momentum modes using ultra-compact integrated vortex emitters. Nature Communications, 2014, 5: 4856
https://doi.org/10.1038/ncomms5856 pmid: 25229882
45 Liu J, Li S, Zhu L, Klitis C, Chen Y, Wang A, Li S, Long Y, Zheng S, Chen S, Sorel M. Demonstration of few mode fiber transmission link seeded by a silicon photonic integrated optical vortex emitter. In: Proceeding of European Conference on Optical Communication (ECOC), 2015
46 Moreno I, Davis J A, Ruiz I, Cottrell D M. Decomposition of radially and azimuthally polarized beams using a circular-polarization and vortex-sensing diffraction grating. Optics Express, 2010, 18(7): 7173–7183
https://doi.org/10.1364/OE.18.007173 pmid: 20389738
47 Zhu J, Chen Y, Zhang Y, Cai X, Yu S. Spin and orbital angular momentum and their conversion in cylindrical vector vortices. Optics Letters, 2014, 39(15): 4435–4438
https://doi.org/10.1364/OL.39.004435 pmid: 25078196
48 Xiao Q S, Klitis C, Li S M, Chen Y Y, Cai X L, Sorel M, Yu S Y. Generation of photonic orbital angular momentum superposition states using vortex beam emitters with superimposed gratings. Optics Express, 2016, 24(4): 3168–3176
https://doi.org/10.1364/OPTICA.2.000547
49 Li H, Phillips D B, Wang X, Ho Y L, Chen L, Zhou X, Zhu J, Yu S, Cai X. Orbital angular momentum vertical-cavity surface-emitting lasers. Optica, 2015, 2(6): 547–552
https://doi.org/10.1364/OPTICA.2.000547
[1] Chenhao WAN, Guanghao RUI, Jian CHEN, Qiwen ZHAN. Detection of photonic orbital angular momentum with micro- and nano-optical structures[J]. Front. Optoelectron., 2019, 12(1): 88-96.
[2] Peng LI, Sheng LIU, Yi ZHANG, Lei HAN, Dongjing WU, Huachao CHENG, Shuxia QI, Xuyue GUO, Jianlin ZHAO. Modulation of orbital angular momentum on the propagation dynamics of light fields[J]. Front. Optoelectron., 2019, 12(1): 69-87.
[3] Long ZHU, Jian WANG. A review of multiple optical vortices generation: methods and applications[J]. Front. Optoelectron., 2019, 12(1): 52-68.
[4] Leslie A. RUSCH, Sophie LAROCHELLE. Fiber transmission demonstrations in vector mode space division multiplexing[J]. Front. Optoelectron., 2018, 11(2): 155-162.
[5] Yunhong DING,Haiyan OU,Jing XU,Meng XIONG,Yi AN,Hao HU,Michael GALILI,Abel Lorences RIESGO,Jorge SEOANE,Kresten YVIND,Leif Katsuo OXENLØWE,Xinliang ZHANG,Dexiu HUANG,Christophe PEUCHERET. Linear all-optical signal processing using silicon micro-ring resonators[J]. Front. Optoelectron., 2016, 9(3): 362-376.
[6] Jing DAI,Minming ZHANG,Feiya ZHOU,Deming LIU. Highly efficient tunable optical filter based on liquid crystal micro-ring resonator with large free spectral range[J]. Front. Optoelectron., 2016, 9(1): 112-120.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed