|
|
|
Silicon-plus photonics |
Daoxin DAI1( ),Yanlong YIN1,Longhai YU1,Hao WU1,Di LIANG2,Zhechao WANG3,Liu LIU4 |
1. Centre for Optical and Electromagnetic Research, State Key Laboratory for Modern Optical Instrumentation, Zhejiang University, Hangzhou 310058, China 2. System Research Lab, Hewlett Packard labs, Palo Alto, CA, USA 3. Center for Nano- and Biophotonics (NB-Photonics), Ghent University, Sint-Pietersnieuwstraat 41, Ghent 9000, Belgium 4. SCNU-ZJU Joint Research Center of Photonics, Centre for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China |
|
|
|
|
Abstract Silicon photonics has become very popular because of their compatibility with mature CMOS technologies. However, pure silicon is still very difficult to be utilized to obtain various photonic functional devices for large-scale photonic integration due to intrinsic properties. Silicon-plus photonics, which pluses other materials to break the limitation of silicon, is playing a very important role currently and in the future. In this paper, we give a review and discussion on the progresses of silicon-plus photonics, including the structures, devices and applications.
|
| Keywords
silicon-plus
hybrid
plsamonic
photodetector
modulator
graphene
III-V
|
|
Corresponding Author(s):
Daoxin DAI
|
|
Just Accepted Date: 26 August 2016
Online First Date: 13 September 2016
Issue Date: 28 September 2016
|
|
| 1 |
Hochberg M, Baehr-Jones T. Towards fabless silicon photonics. Nature Photonics, 2010, 4(8): 492–494
https://doi.org/10.1038/nphoton.2010.172
|
| 2 |
Asghari M, Krishnamoorthy A V. Silicon photonics: energy-efficient communication. Nature Photonics, 2011, 5(5): 268–270
https://doi.org/10.1038/nphoton.2011.68
|
| 3 |
Guan X, Wu H, Dai D. Silicon hybrid nanoplasmonics for ultra-dense photonic integration. Frontiers of Optoelectronics, 2014, 7(3): 300–319
https://doi.org/10.1007/s12200-014-0435-1
|
| 4 |
Fang A W, Park H, Cohen O, Jones R, Paniccia M J, Bowers J E. Electrically pumped hybrid AlGaInAs-silicon evanescent laser. Optics Express, 2006, 14(20): 9203–9210
https://doi.org/10.1364/OE.14.009203
pmid: 19529301
|
| 5 |
Park H, Kuo Y H, Fang A W, Jones R, Cohen O, Paniccia M J, Bowers J E. A hybrid AlGaInAs-silicon evanescent preamplifier and photodetector. Optics Express, 2007, 15(21): 13539–13546
https://doi.org/10.1364/OE.15.013539
pmid: 19550622
|
| 6 |
Ishikawa Y, Wada K, Cannon D D, Liu J, Luan H C, Kimerling L C. Strain-induced band gap shrinkage in Ge grown on Si substrate. Applied Physics Letters, 2003, 82(13): 2044–2046
https://doi.org/10.1063/1.1564868
|
| 7 |
Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F, Zhang X. A graphene-based broadband optical modulator. Nature, 2011, 474(7349): 64–67
https://doi.org/10.1038/nature10067
pmid: 21552277
|
| 8 |
Gan X, Shiue R, Gao Y, Meric I, Heinz T F, Shepard K, Hone J, Assefa S, Englund D. Chip-integrated ultrafast graphene photodetector with high responsivity. Nature Photonics, 2013, 7(11): 883–887
https://doi.org/10.1038/nphoton.2013.253
|
| 9 |
Pospischil A, Humer M, Furchi M M, Bachmann D, Guider R, Fromherz T, Mueller T. CMOS-compatible graphene photodetector covering all optical communication bands. Nature Photonics, 2013, 7(11): 892–896
https://doi.org/10.1038/nphoton.2013.240
|
| 10 |
Wang X, Cheng Z, Xu K, Tsang H K, Xu J. High-responsivity graphene/silicon-heterostructure waveguide photo-detectors. Nature Photonics, 2013, 7(11): 888–891
https://doi.org/10.1038/nphoton.2013.241
|
| 11 |
Koos C, Vorreau P, Vallaitis T, Dumon P, Bogaerts W, Baets R, Esembeson B, Biaggio I, Michinobu T, Diederich F, Freude W, Leuthold J. All-optical high-speed signal processing with silicon–organic hybrid slot waveguides. Nature Photonics, 2009, 3(4): 216–219
https://doi.org/10.1038/nphoton.2009.25
|
| 12 |
Melikyan A, Alloatti L, Muslija A, Hillerkuss D, Schindler P C, Li J, Palmer R, Korn D, Muehlbrandt S, Van Thourhout D, Chen B, Dinu R, Sommer M, Koos C, Kohl M, Freude W, Leuthold J. High-speed plasmonic phase modulators. Nature Photonics, 2014, 8(3): 229–233
https://doi.org/10.1038/nphoton.2014.9
|
| 13 |
Tien M C, Mizumoto T, Pintus P, Kromer H, Bowers J E. Silicon ring isolators with bonded nonreciprocal magneto-optic garnets. Optics Express, 2011, 19(12): 11740–11745
https://doi.org/10.1364/OE.19.011740
pmid: 21716405
|
| 14 |
De Cort W, Beeckman J, Claes T, Neyts K, Baets R. Wide tuning of silicon-on-insulator ring resonators with a liquid crystal cladding. Optics Letters, 2011, 36(19): 3876–3878
https://doi.org/10.1364/OL.36.003876
pmid: 21964127
|
| 15 |
Famà S, Colace L, Masini G, Assanto G, Luan H. High performance germanium-on-silicon detectors for optical communications. Applied Physics Letters, 2002, 81(4): 586–588
https://doi.org/10.1063/1.1496492
|
| 16 |
Srinivasan S A, Pantouvaki M, Gupta S, Chen H T, Verheyen P, Lepage G, Roelkens G, Saraswat K, Thourhout D V, Absil P, Campenhout J V. 56 Gb/s germanium waveguide electro-absorption modulator. Journal of Lightwave Technology, 2016, 34(2): 419–424
|
| 17 |
Chen L, Dong P, Lipson M. High performance germanium photodetectors integrated on submicron silicon waveguides by low temperature wafer bonding. Optics Express, 2008, 16(15): 11513–11518
https://doi.org/10.1364/OE.16.011513
pmid: 18648472
|
| 18 |
Liu J, Camacho-Aguilera R, Bessette J T, Sun X, Wang X, Cai Y, Kimerling L C, Michel J. Ge-on-Si optoelectronics. Thin Solid Films, 2012, 520(8): 3354–3360
https://doi.org/10.1016/j.tsf.2011.10.121
|
| 19 |
Guo W, Date L, Pena V, Bao X, Merckling C, Waldron N, Collaert N, Caymax M, Sanchez E, Vancoille E, Barla K, Thean A, Eyben P, Vandervorst W. Selective metal–organic chemical vapor deposition growth of high quality GaAs on Si(001). Applied Physics Letters, 2014, 105(6): 062101-1–062101-3
https://doi.org/10.1063/1.4892468
|
| 20 |
Merckling C, Waldron N, Jiang S, Guo W, Barla K, Heyns M, Collaert N, Thean A, Vandervorst W. Selective-area metal organic vapor-phase epitaxy of III–V on Si: what about defect density? ECS Transactions, 2014, 64(6): 513–521
https://doi.org/10.1149/06406.0513ecst
|
| 21 |
Wang Z, Tian B, Pantouvaki M, Guo W, Absil P, Campenhout J V, Merckling C, Thourhout D V. Room-temperature InP distributed feedback laser array directly grown on silicon. Nature Photonics, 2015, 9: 837–842
|
| 22 |
Mueller T, Xia F, Avouris P. Graphene photodetectors for high-speed optical communications. Nature Photonics, 2010, 4(5): 297–301
https://doi.org/10.1038/nphoton.2010.40
|
| 23 |
Bonaccorso F, Sun Z, Hasan T, Ferrari A C. Graphene photonics and optoelectronics. Nature Photonics, 2010, 4(9): 611–622
https://doi.org/10.1038/nphoton.2010.186
|
| 24 |
Bao Q, Loh K P. Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano, 2012, 6(5): 3677–3694
https://doi.org/10.1021/nn300989g
pmid: 22512399
|
| 25 |
Hu Y, Pantouvaki M, Van Campenhout J, Brems S, Asselberghs I, Huyghebaert C, Absil P, Van Thourhout D. Broadband 10 Gb/s operation of graphene electro-absorption modulator on silicon. Laser & Photonics Reviews, 2016, 10(2): 307–316
https://doi.org/10.1002/lpor.201500250
|
| 26 |
Yu L, Xu Y, Shi Y, Dai D. Linear and nonlinear optical absorption of on-chip silicon-on-insulator nanowires with graphene. In: Proceedings of Asia Communications and Photonics Conference, 2012: AS1B. 3-1–AS1B. 3-3
|
| 27 |
Gu T, Petrone N, McMillan J F, van der Zande A, Yu M, Lo G Q, Kwong D L, Hone J, Wong C W. Regenerative oscillation and four-wave mixing in graphene optoelectronics. Nature Photonics, 2012, 6(8): 554–559
https://doi.org/10.1038/nphoton.2012.147
|
| 28 |
Yu L, Zheng J, Xu Y, Dai D, He S. Local and nonlocal optically induced transparency effects in graphene-silicon hybrid nanophotonic integrated circuits. ACS Nano, 2014, 8(11): 11386–11393
https://doi.org/10.1021/nn504377m
pmid: 25372937
|
| 29 |
Lee J M, Kim D J, Kim G H, Kwon O K, Kim K J, Kim G. Controlling temperature dependence of silicon waveguide using slot structure. Optics Express, 2008, 16(3): 1645–1652
https://doi.org/10.1364/OE.16.001645
pmid: 18542243
|
| 30 |
Pollnau M. Rare-earth-ion-doped channel waveguide lasers on silicon. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(1): 1602512-1–1602512-12
https://doi.org/10.1109/JSTQE.2014.2351811
|
| 31 |
Chen S, Shi Y, He S, Dai D. Low-loss and broadband 2 × 2 silicon thermo-optic Mach-Zehnder switch with bent directional couplers. Optics Letters, 2016, 41(4): 836–839
pmid: 26872201
|
| 32 |
Alam M Z, Meier J, Aitchison J S, Mojahedi M. Super mode propagation in low index medium. In: Proceedings of Quantum Electronics and Laser Science Conference, 2007, JThD112-1–JThD112-2
|
| 33 |
Oulton R F, Sorger V J, Genov D A, Pile D F P, Zhang X. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nature Photonics, 2008, 2(8): 496–500
https://doi.org/10.1038/nphoton.2008.131
|
| 34 |
Fujii M, Leuthold J, Freude W. Dispersion relation and loss of subwavelength confined mode of metal-dielectric-gap optical waveguides. IEEE Photonics Technology Letters, 2009, 21(6): 362–364
https://doi.org/10.1109/LPT.2008.2011995
|
| 35 |
Dai D, He S. A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement. Optics Express, 2009, 17(19): 16646–16653
https://doi.org/10.1364/OE.17.016646
pmid: 19770880
|
| 36 |
Dai D, He S. Low-loss hybrid plasmonic waveguide with double low-index nano-slots. Optics Express, 2010, 18(17): 17958–17966
https://doi.org/10.1364/OE.18.017958
pmid: 20721182
|
| 37 |
Dai D, Shi Y, He S, Wosinski L, Thylen L. Gain enhancement in a hybrid plasmonic nano-waveguide with a low-index or high-index gain medium. Optics Express, 2011, 19(14): 12925–12936
https://doi.org/10.1364/OE.19.012925
pmid: 21747445
|
| 38 |
Kwon M S. Metal-insulator-silicon-insulator-metal waveguides compatible with standard CMOS technology. Optics Express, 2011, 19(9): 8379–8393
https://doi.org/10.1364/OE.19.008379
pmid: 21643089
|
| 39 |
Kim J T. CMOS-compatible hybrid plasmonic slot waveguide for on-chip photonic circuits. IEEE Photonics Technology Letters, 2011, 23(20): 1481–1483
https://doi.org/10.1109/LPT.2011.2163500
|
| 40 |
Zhu S, Liow T Y, Lo G Q, Kwong D L. Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration. Optics Express, 2011, 19(9): 8888–8902
https://doi.org/10.1364/OE.19.008888
pmid: 21643142
|
| 41 |
Bian Y, Zheng Z, Zhao X, Liu L, Su Y L, Liu J, Zhu J, Zhou T. Hybrid plasmonic waveguide incorporating an additional semiconductor stripe for enhanced optical confinement in the gap region. Journal of Optics, 2013, 15(3): 035503-1–035503-9
https://doi.org/10.1088/2040-8978/15/3/035503
|
| 42 |
Amirhosseini A, Safian R. A hybrid plasmonic waveguide for the propagation of surface plasmon polariton at 1.55 mm on SOI substrate. IEEE Transactions on Nanotechnology, 2013, 12(6): 1031–1036
https://doi.org/10.1109/TNANO.2013.2263987
|
| 43 |
Alam M Z, Meier J, Aitchison J S, Mojahedi M. Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends. Optics Express, 2010, 18(12): 12971–12979
https://doi.org/10.1364/OE.18.012971
pmid: 20588426
|
| 44 |
Goykhman I, Desiatov B, Levy U. Experimental demonstration of locally oxidized hybrid silicon-plasmonic waveguide. Applied Physics Letters, 2010, 97(14): 141106-1–141106-3
https://doi.org/10.1063/1.3496463
|
| 45 |
Wu H, Guan X, Dai D. Ultracompact on-chip long-wave photodetector based on hybrid plasmonic waveguides. In: Proceedings of Piers, Session 1P4a SC2: Plasmonic Nanophotonics 1—Experiment, Measurement and Fabrication, 2014, 90
|
| 46 |
Niklaus F, Stemme G, Lu J Q, Gutmann R J. Adhesive wafer bonding. Journal of Applied Physics, 2006, 99(3): 031101-1–031101-28
|
| 47 |
Keyvaninia S, Muneeb M, Stanković S, Van Veldhoven P J, Van Thourhout D, Roelkens G. Ultra-thin DVS-BCB adhesive bonding of III-V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate. Optical Materials Express, 2013, 3(1): 35–46
https://doi.org/10.1364/OME.3.000035
|
| 48 |
Fu X, Cheng J, Huang Q, Hu Y, Xie W, Tassaert M, Verbist J, Ma K, Zhang J, Chen K, Zhang C, Shi Y, Bauwelinck J, Roelkens G, Liu L, He S. 5 ´ 20 Gb/s heterogeneously integrated III-V on silicon electro-absorption modulator array with arrayed waveguide grating multiplexer. Optics Express, 2015, 23(14): 18686–18693
https://doi.org/10.1364/OE.23.018686
pmid: 26191928
|
| 49 |
Huang Q, Cheng J, Liu L, Tang Y, He S. Ultracompact tapered coupler for the Si/III-V heterogeneous integration. Applied Optics, 2015, 54(14): 4327–4332
https://doi.org/10.1364/AO.54.004327
pmid: 25967484
|
| 50 |
Gösele U, Bluhm Y, Kästner G, Kopperschmidt P, Kräuter G, Scholz R, Schumacher A, Senz S, Tong Q Y, Huang L J, Chao Y L, Lee T H. Fundamental issues in wafer bonding. Journal of Vacuum Science & Technology A, Vacuum, Surfaces, and Films, 1999, 17(4): 1145–1152
https://doi.org/10.1116/1.581788
|
| 51 |
Liang D, Roelkens G, Baets R, Bowers J E. Hybrid integrated platforms for silicon photonics. Materials (Basel), 2010, 3(3): 1782–1802
|
| 52 |
Liang D, Bowers J E. Highly efficient vertical outgassing channels for low-temperature InP-to-silicon direct wafer bonding on the silicon-on-insulator (SOI) substrate. Journal of Vacuum Science & Technology B Microelectronics and Nanometer Structures, 2008, 26(4): 1560–1568
https://doi.org/10.1116/1.2943667
|
| 53 |
Liang D, Fiorentino M, Okumura T, Chang H H, Spencer D T, Kuo Y H, Fang A W, Dai D, Beausoleil R G, Bowers J E. Electrically-pumped compact hybrid silicon microring lasers for optical interconnects. Optics Express, 2009, 17(22): 20355–20364
https://doi.org/10.1364/OE.17.020355
pmid: 19997264
|
| 54 |
Liang D, Fiorentino M, Srinivasan S, Todd S T, Kurczveil G, Bowers J E, Beausoleil R G. Optimization of hybrid silicon microring lasers. IEEE Photonics Journal, 2011, 3(3): 580–587
|
| 55 |
Liang D, Srinivasan S, Fiorentino M, Kurczveil G, Bowers J E, Beausoleil R G. Optimization of hybrid silicon microring lasers. IEEE Photonics Journal, 2011, 3(3): 580–587
|
| 56 |
Zhang C, Liang D, Kurczveil G, Bowers J E, Beausoleil R G. Thermal management of hybrid silicon ring lasers for high temperature operation. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(6): 1–7
|
| 57 |
Zhang C, Liang D, Li C, Kurczveil G, Bowers J E, Beausoleil R G. High-speed hybrid silicon microring lasers. In: Proceedings of 2015 IEEE 58th International Midwest Symposium on Circuits and Systems (MWSCAS), 2015, 1–4
|
| 58 |
Ayers J E. Heteroepitaxy of Semiconductors: Theory, Growth, and Characterization. New York: CRC Press, 2007
|
| 59 |
Hossain N, Sweeney S J, Rogowsky S, Ostendorf R, Wagner J, Liebich S, Zimprich M, Volz K, Kunert B, Stolz W. Reduced threshold current dilute nitride Ga(NAsP)/GaP quantum well lasers grown by MOVPE. Electronics Letters, 2011, 47(16): 931–933
https://doi.org/10.1049/el.2011.1927
|
| 60 |
Reboul J R, Cerutti L, Rodriguez J B, Grech P, Tournié E. Continuouswave operation above room temperature of GaSb-based laser diodes grown on Si. Applied Physics Letters, 2011, 99(12): 121113-1–121113-3
https://doi.org/10.1063/1.3644983
|
| 61 |
Chen R, Tran T T D, Ng K W, Ko W S, Chuang L C, Sedgwick F G, Chang-Hasnain C. Nanolasers grown on silicon. Nature Photonics, 2011, 5(3): 170–175
https://doi.org/10.1038/nphoton.2010.315
|
| 62 |
Wang Z, Tian B, Paladugu M, Pantouvaki M, Le Thomas N, Merckling C, Guo W, Dekoster J, Van Campenhout J, Absil P, Van Thourhout D. Polytypic InP nanolaser monolithically integrated on (001) silicon. Nano Letters, 2013, 13(11): 5063–5069
https://doi.org/10.1021/nl402145r
pmid: 24073748
|
| 63 |
Chen S M, Tang M C, Wu J, Jiang Q, Dorogan V G, Benamara M, Mazur Y I, Salamo G J, Seeds A J, Liu H. 1.3 mm InAs/GaAs quantum-dot laser monolithically grown on Si substrates operating over 100°C. Electronics Letters, 2014, 50(20): 1467–1468
https://doi.org/10.1049/el.2014.2414
|
| 64 |
Wang T, Liu H, Lee A, Pozzi F, Seeds A. 1.3-mm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates. Optics Express, 2011, 19(12): 11381–11386
https://doi.org/10.1364/OE.19.011381
pmid: 21716368
|
| 65 |
del Alamo J A. Nanometre-scale electronics with III-V compound semiconductors. Nature, 2011, 479(7373): 317–323
https://doi.org/10.1038/nature10677
pmid: 22094691
|
| 66 |
Rouvière M, Halbwax M, Cercus J, Cassan E, Vivien L, Pascal D, Heitzmann M, Hartmann J, Laval S. Integration of germanium waveguide photodetectors for intrachip optical interconnects. Optical Engineering (Redondo Beach, Calif.), 2005, 44(7): 075402–075406
https://doi.org/10.1117/1.1950067
|
| 67 |
Kang Y, Liu H, Morse M, Paniccia M J, Zadka M, Litski S, Sarid G, Pauchard A, Kuo Y, Chen H, Sfar Zaoui W, Bowers J E, Beling A, McIntosh D C, Zheng X, Campbell J C. Monolithic Ge/Si avalanche photodiodes with 340 GHz gain-bandwidth product. Nature Photonics, 2009, 3(1): 59–63
https://doi.org/10.1038/nphoton.2008.247
|
| 68 |
Koester S J, Schaub J D, Dehlinger G, Chu J O. Germanium-on-SOI infrared detectors for integrated photonic applications. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(6): 1489–1502
https://doi.org/10.1109/JSTQE.2006.883160
|
| 69 |
Michel J, Liu J, Kimerling L C. High performance Ge-on-Si photodetectors. Nature Photonics, 2010, 4(8): 527–534
https://doi.org/10.1038/nphoton.2010.157
|
| 70 |
Hawkins A R, Wu W, Abraham P, Streubel K, Bowers J E. High gain-bandwidth-product silicon heterointerface photodetector. Applied Physics Letters, 1997, 70(3): 303–305
https://doi.org/10.1063/1.118399
|
| 71 |
Dai D, Piels M, Bowers J E. Monolithic germanium/silicon photodetectors with decoupled structures: resonant APDs and UTC photodiodes. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(6): 43–56
|
| 72 |
Duan N, Liow T Y, Lim A E, Ding L, Lo G Q. 310 GHz gain-bandwidth product Ge/Si avalanche photodetector for 1550 nm light detection. Optics Express, 2012, 20(10): 11031–11036
https://doi.org/10.1364/OE.20.011031
pmid: 22565725
|
| 73 |
Virot L, Vivien L, Fédéli J M, Bogumilowicz Y, Hartmann J M, Bœuf F, Crozat P, Marris-Morini D, Cassan E. High-performance waveguide-integrated germanium PIN photodiodes for optical communication applications. Photonics Research, 2013, 1(3): 140–147
https://doi.org/10.1364/PRJ.1.000140
|
| 74 |
Dai D, Chen H, Bowers J E, Kang Y, Morse M, Paniccia M J. Equivalent circuit model of a waveguide-type Ge/Si avalanche photodetector. Physica Status Solidi, 2010, 7(10): 2532–2535
https://doi.org/10.1002/pssc.200983874
|
| 75 |
Ramaswamy A, Piels M, Nunoya N, Yin T, Bowers J E. High power silicon-germanium photodiodes for microwave photonic applications. IEEE Transactions on Microwave Theory and Techniques, 2010, 58(11): 3336–3343
https://doi.org/10.1109/TMTT.2010.2076630
|
| 76 |
Piels M, Bowers J E. Si/Ge uni-traveling carrier photodetector. Optics Express, 2012, 20(7): 7488–7495
https://doi.org/10.1364/OE.20.007488
pmid: 22453428
|
| 77 |
Liu J, Sun X, Camacho-Aguilera R, Kimerling L C, Michel J. Ge-on-Si laser operating at room temperature. Optics Letters, 2010, 35(5): 679–681
pmid: 20195317
|
| 78 |
Jenkins D W, Dow J D. Electronic properties of metastable GexSn1-<?Pub Caret?>x alloys. Physical Review B: Condensed Matter and Materials Physics, 1987, 36(15): 7994–8000
|
| 79 |
Low K L, Yang Y, Han G, Fan W, Yeo Y. Electronic band structure and effective mass parameters of Ge1−xSnx alloys. Journal of Applied Physics, 2012, 112(10): 103715-1–103715-9
|
| 80 |
Gupta S, Magyari-Köpe B, Nishi Y, Saraswat K C. Achieving direct band gap in germanium through integration of Sn alloying and external strain. Journal of Applied Physics, 2013, 113(7): 073707-1–073707-7
|
| 81 |
He G, Atwater H A. Interband transitions in SnxGe1−x alloys. Physical Review Letters, 1997, 79(10): 1937–1940
|
| 82 |
Grzybowski G, Beeler R T, Jiang L, Smith D J, Kouvetakis J, Menéndez J. Next generation of Ge1−ySny (y= 0.01−0.09) alloys grown on Si (100) via Ge3H8 and SnD4: reaction kinetics and tunable emission. Applied Physics Letters, 2012, 101(7): 072105-1–072105-5
|
| 83 |
Chen R, Lin H, Huo Y, Hitzman C, Kamins T I, Harris J S. Increased photoluminescence of strain-reduced, high-Sn composition Ge1-xSnx alloys grown by molecular beam epitaxy. Applied Physics Letters, 2011, 99(18): 181125-1–181125-3
|
| 84 |
Wirths S, Geiger R, von den Driesch N, Mussler G, Stoica T, Mantl S, Ikonic Z, Luysberg M, Chiussi S, Hartmann J M, Sigg H, Faist J, Buca D, Grützmacher D. Lasing in direct-bandgap GeSn alloy grown on Si. Nature Photonics, 2015, 9(2): 88–92
|
| 85 |
Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L. Ultrahigh electron mobility in suspended graphene. Solid State Communications, 2008, 146(9-10): 351–355
https://doi.org/10.1016/j.ssc.2008.02.024
|
| 86 |
Xia F, Mueller T, Lin Y M, Valdes-Garcia A, Avouris P. Ultrafast graphene photodetector. Nature Nanotechnology, 2009, 4(12): 839–843
https://doi.org/10.1038/nnano.2009.292
pmid: 19893532
|
| 87 |
Bao Q, Zhang H, Ni Z, Wang Y, Polavarapu L, Shen Z, Xu Q, Tang D, Loh K P. Monolayer graphene as a saturable absorber in a mode-locked laser. Nano Research, 2011, 4(3): 297–307
https://doi.org/10.1007/s12274-010-0082-9
|
| 88 |
Yu L, Dai D, He S. Graphene-based transparent flexible heat conductor for thermally tuning nanophotonic integrated devices. Applied Physics Letters, 2014, 105(25): 251104-1–251104-5
https://doi.org/10.1063/1.4905002
|
| 89 |
Yang B, Yang L, Hu R, Sheng Z, Dai D, Liu Q, He S. Fabrication and characterization of small optical ridge waveguides based on SU-8 polymer. Journal of Lightwave Technology, 2009, 27(18): 4091–4096
https://doi.org/10.1109/JLT.2009.2022285
|
| 90 |
Koos C, Leuthold J, Freude W, Kohl M, Dalton L R, Bogaerts W, Giesecke A L, Lauermann M, Melikyan A, Koeber S, Wolf S, Weimann C, Muehlbrandt S, Koehnle K, Pfeifle J, Palmer R, Alloatti L, Elder D L, Wahlbrink T, Bolten J.Silicon-organic hybrid (SOH) and plasmonic-organic hybrid (POH) integration. In: Proceedings of Optical Fiber Communication Conference and Exhition, 2015, Tu2A.1-1–Tu2A.1-3
|
| 91 |
Wang X, Xiao S, Zheng W, Wang F, Li Y, Hao Y, Jiang X, Wang M, Yang J. Athermal silicon arrayed waveguide grating with polymer-filled slot structure. Optics Communications, 2009, 282(14): 2841–2844
https://doi.org/10.1016/j.optcom.2009.04.020
|
| 92 |
Lee J M, Kim D J, Ahn H, Park S H, Kim G. Temperature dependence of silicon nanophotonic ring resonator with a polymeric overlayer. Journal of Lightwave Technology, 2007, 25(8): 2236–2243
https://doi.org/10.1109/JLT.2007.899792
|
| 93 |
Teng J, Dumon P, Bogaerts W, Zhang H, Jian X, Han X, Zhao M, Morthier G, Baets R. Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides. Optics Express, 2009, 17(17): 14627–14633
https://doi.org/10.1364/OE.17.014627
pmid: 19687941
|
| 94 |
Lauermann M, Palmer R, Koeber S, Schindler P C, Korn D, Wahlbrink T, Bolten J, Waldow M, Elder D L, Dalton L R, Leuthold J, Freude W, Koos C. Low-power silicon-organic hybrid (SOH) modulators for advanced modulation formats. Optics Express, 2014, 22(24): 29927–29936
pmid: 25606923
|
| 95 |
Koeber S, Palmer R, Lauermann M, Heni W, Elder D L, Korn D, Woessner M, Alloatti L, Koenig S, Schindler P, Yu H, Bogaerts W, Dalton L R, Freude W, Leuthold J, Koos C.Femtojoule electro-optic modulation using a silicon-organic hybrid device. Light: Science Application, 2015, 4(2): e255-1–e255-8
|
| 97 |
Haffner C, Heni W, Fedoryshyn Y, Niegemann J, Melikyan A, Elder D L, Baeuerle B, Salamin Y, Josten A, Koch U, Hoessbacher C, Ducry F, Juchli L, Emboras A, Hillerkuss D, Kohl M, Dalton L R, Hafner C, Leuthold J. All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale. Nature Photonics, 2015, 9(8): 525–528
|
| 96 |
Korn D, Lauermann M, Koeber S, Appel P, Alloatti L, Palmer R, Dumon P, Freude W, Leuthold J, Koos C. Lasing in silicon-organic hybrid waveguides. Nature communications, 2016, 7: 10864-1–10864-9
|
| 98 |
Lauermann M, Wolf S, Palmer R, Bielik A, Altenhain L, Lutz J, Schmid R, Wahlbrink T, Bolten J, Giesecke A L, Freude W, Koos C.64 GBd operation of a silicon-organic hybrid modulator at elevated temperature. In: Proceedings of Optical Fiber Communication Conference and Exhibition, 2015: Tu2A.5-1–Tu2A.5-3
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|