Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2016, Vol. 9 Issue (3) : 436-449    https://doi.org/10.1007/s12200-016-0629-9
REVIEW ARTICLE
Silicon-plus photonics
Daoxin DAI1(),Yanlong YIN1,Longhai YU1,Hao WU1,Di LIANG2,Zhechao WANG3,Liu LIU4
1. Centre for Optical and Electromagnetic Research, State Key Laboratory for Modern Optical Instrumentation, Zhejiang University, Hangzhou 310058, China
2. System Research Lab, Hewlett Packard labs, Palo Alto, CA, USA
3. Center for Nano- and Biophotonics (NB-Photonics), Ghent University, Sint-Pietersnieuwstraat 41, Ghent 9000, Belgium
4. SCNU-ZJU Joint Research Center of Photonics, Centre for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
 Download: PDF(582 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Silicon photonics has become very popular because of their compatibility with mature CMOS technologies. However, pure silicon is still very difficult to be utilized to obtain various photonic functional devices for large-scale photonic integration due to intrinsic properties. Silicon-plus photonics, which pluses other materials to break the limitation of silicon, is playing a very important role currently and in the future. In this paper, we give a review and discussion on the progresses of silicon-plus photonics, including the structures, devices and applications.

Keywords silicon-plus      hybrid      plsamonic      photodetector      modulator      graphene      III-V     
Corresponding Author(s): Daoxin DAI   
Just Accepted Date: 26 August 2016   Online First Date: 13 September 2016    Issue Date: 28 September 2016
 Cite this article:   
Daoxin DAI,Yanlong YIN,Longhai YU, et al. Silicon-plus photonics[J]. Front. Optoelectron., 2016, 9(3): 436-449.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-016-0629-9
https://academic.hep.com.cn/foe/EN/Y2016/V9/I3/436
silicon+ X material function visible sensing near-infrared commun. mid-infrared sensing
metal heater
hybrid plasmonics
photothermal detector
III-V laser, amplifier, photodetectors, modulators √ (~2 mm)
II-VI laser, amplifier, photodetectors, modulators
IV Ge/Sn lasers
Ge photodetectors, modulators
graphene photodetectors, modulators
polymer EO* polymer modulator
strong nonlinear effect all-optical
polymer with dopants emission, amplifier
Tab.1  Summary of materials used for silicon-plus photonics
Fig.1  Thermal-optical switch with metal micro-heaters and the array [31]
Fig.2  Cross section of a silicon hybrid nanoplasmonic waveguide with a metal cap; (b) calculated field distribution for the quasi-TM fundamental mode when wco = 200 nm and hslot = 50 nm [35]
Fig.3  Configuration of photodetector based on a silicon hybrid plasmonic waveguide (HPW). Inset shows the cross-section of silicon HPW [45]. (a) Schematic configuration; (b) optical mode field distribution; (c) temperature distribution due to the light absorption of metal
Fig.4  (a) Cross section of a Si/IIIV hybrid integrated sample using the adhesive bonding technique; (b) schemetic structure of the present active section; (c) tip end of a fabricated adiabatic taper; (d) fabricated chip where two 6-channel transceivers are present. The total size is 3 mm × 0.65 mm [48]
Fig.5  Eye patterns of 27−1 on-return-to-zero pseudo random bit sequence for (a) modulation and (b) detection of one EA section [48]
Fig.6  (a) 3D schematic of a hybrid Si microring lasers with integrated thermal shunts; (b) top-view scanning electron microscope (SEM) image of such a device where ring laser and bus waveguide are highlighted in red and blue, respectively; (c) temperature-dependent LI characteristic and (d) measured eye diagram at 12.5 Gbps [56,57]
Fig.7  (a) Schematics of an array of InP-on-Si distributed feedback laser (DFB) lasers. Inset: a transmission electron microscope (TEM) image of the grown InP-on-Si waveguide along the longitudinal direction; (b) light in-light out curves of an array of DFB lasers. Inset: photoluminescence image of an array of lasers under large area pump condition [21]
Fig.8  (a) Microscope picture for waveguide-type Ge/Si SACM APDs; (b) an evanescently-coupled Ge/Si APD; (c) a butt-coupled Ge/Si APD [71]
Fig.9  SEM image of graphene-silicon hybrid nanophotonic wires [28]
Fig.10  (a) Three-dimensional schematic illustration of a graphene-silicon hybrid nanophotonic wire; (b) dynamic responses of the output power for TE- and TM- polarization modes with a modulated optical pump locally [28]
Fig.11  A thermally tuning MZI with a non-local traditional metal heater and a graphene transparent flexible heat conductor [88]
Fig.12  A thermally tuning silicon micro-disk with a graphene transparent flexible heat conductor [88]
1 Hochberg M, Baehr-Jones T. Towards fabless silicon photonics. Nature Photonics, 2010, 4(8): 492–494
https://doi.org/10.1038/nphoton.2010.172
2 Asghari M, Krishnamoorthy A V. Silicon photonics: energy-efficient communication. Nature Photonics, 2011, 5(5): 268–270
https://doi.org/10.1038/nphoton.2011.68
3 Guan X, Wu H, Dai D. Silicon hybrid nanoplasmonics for ultra-dense photonic integration. Frontiers of Optoelectronics, 2014, 7(3): 300–319
https://doi.org/10.1007/s12200-014-0435-1
4 Fang A W, Park H, Cohen O, Jones R, Paniccia M J, Bowers J E. Electrically pumped hybrid AlGaInAs-silicon evanescent laser. Optics Express, 2006, 14(20): 9203–9210
https://doi.org/10.1364/OE.14.009203 pmid: 19529301
5 Park H, Kuo Y H, Fang A W, Jones R, Cohen O, Paniccia M J, Bowers J E. A hybrid AlGaInAs-silicon evanescent preamplifier and photodetector. Optics Express, 2007, 15(21): 13539–13546
https://doi.org/10.1364/OE.15.013539 pmid: 19550622
6 Ishikawa Y, Wada K, Cannon D D, Liu J, Luan H C, Kimerling L C. Strain-induced band gap shrinkage in Ge grown on Si substrate. Applied Physics Letters, 2003, 82(13): 2044–2046
https://doi.org/10.1063/1.1564868
7 Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F, Zhang X. A graphene-based broadband optical modulator. Nature, 2011, 474(7349): 64–67
https://doi.org/10.1038/nature10067 pmid: 21552277
8 Gan X, Shiue R, Gao Y, Meric I, Heinz T F, Shepard K, Hone J, Assefa S, Englund D. Chip-integrated ultrafast graphene photodetector with high responsivity. Nature Photonics, 2013, 7(11): 883–887
https://doi.org/10.1038/nphoton.2013.253
9 Pospischil A, Humer M, Furchi M M, Bachmann D, Guider R, Fromherz T, Mueller T. CMOS-compatible graphene photodetector covering all optical communication bands. Nature Photonics, 2013, 7(11): 892–896
https://doi.org/10.1038/nphoton.2013.240
10 Wang X, Cheng Z, Xu K, Tsang H K, Xu J. High-responsivity graphene/silicon-heterostructure waveguide photo-detectors. Nature Photonics, 2013, 7(11): 888–891
https://doi.org/10.1038/nphoton.2013.241
11 Koos C, Vorreau P, Vallaitis T, Dumon P, Bogaerts W, Baets R, Esembeson B, Biaggio I, Michinobu T, Diederich F, Freude W, Leuthold J. All-optical high-speed signal processing with silicon–organic hybrid slot waveguides. Nature Photonics, 2009, 3(4): 216–219
https://doi.org/10.1038/nphoton.2009.25
12 Melikyan A, Alloatti L, Muslija A, Hillerkuss D, Schindler P C, Li J, Palmer R, Korn D, Muehlbrandt S, Van Thourhout D, Chen B, Dinu R, Sommer M, Koos C, Kohl M, Freude W, Leuthold J. High-speed plasmonic phase modulators. Nature Photonics, 2014, 8(3): 229–233
https://doi.org/10.1038/nphoton.2014.9
13 Tien M C, Mizumoto T, Pintus P, Kromer H, Bowers J E. Silicon ring isolators with bonded nonreciprocal magneto-optic garnets. Optics Express, 2011, 19(12): 11740–11745
https://doi.org/10.1364/OE.19.011740 pmid: 21716405
14 De Cort W, Beeckman J, Claes T, Neyts K, Baets R. Wide tuning of silicon-on-insulator ring resonators with a liquid crystal cladding. Optics Letters, 2011, 36(19): 3876–3878
https://doi.org/10.1364/OL.36.003876 pmid: 21964127
15 Famà S, Colace L, Masini G, Assanto G, Luan H. High performance germanium-on-silicon detectors for optical communications. Applied Physics Letters, 2002, 81(4): 586–588
https://doi.org/10.1063/1.1496492
16 Srinivasan S A, Pantouvaki M, Gupta S, Chen H T, Verheyen P, Lepage G, Roelkens G, Saraswat K, Thourhout D V, Absil P, Campenhout J V. 56 Gb/s germanium waveguide electro-absorption modulator. Journal of Lightwave Technology, 2016, 34(2): 419–424
17 Chen L, Dong P, Lipson M. High performance germanium photodetectors integrated on submicron silicon waveguides by low temperature wafer bonding. Optics Express, 2008, 16(15): 11513–11518
https://doi.org/10.1364/OE.16.011513 pmid: 18648472
18 Liu J, Camacho-Aguilera R, Bessette J T, Sun X, Wang X, Cai Y, Kimerling L C, Michel J. Ge-on-Si optoelectronics. Thin Solid Films, 2012, 520(8): 3354–3360
https://doi.org/10.1016/j.tsf.2011.10.121
19 Guo W, Date L, Pena V, Bao X, Merckling C, Waldron N, Collaert N, Caymax M, Sanchez E, Vancoille E, Barla K, Thean A, Eyben P, Vandervorst W. Selective metal–organic chemical vapor deposition growth of high quality GaAs on Si(001). Applied Physics Letters, 2014, 105(6): 062101-1–062101-3
https://doi.org/10.1063/1.4892468
20 Merckling C, Waldron N, Jiang S, Guo W, Barla K, Heyns M, Collaert N, Thean A, Vandervorst W. Selective-area metal organic vapor-phase epitaxy of III–V on Si: what about defect density? ECS Transactions, 2014, 64(6): 513–521
https://doi.org/10.1149/06406.0513ecst
21 Wang Z, Tian B, Pantouvaki M, Guo W, Absil P, Campenhout J V, Merckling C, Thourhout D V. Room-temperature InP distributed feedback laser array directly grown on silicon. Nature Photonics, 2015, 9: 837–842
22 Mueller T, Xia F, Avouris P. Graphene photodetectors for high-speed optical communications. Nature Photonics, 2010, 4(5): 297–301
https://doi.org/10.1038/nphoton.2010.40
23 Bonaccorso F, Sun Z, Hasan T, Ferrari A C. Graphene photonics and optoelectronics. Nature Photonics, 2010, 4(9): 611–622
https://doi.org/10.1038/nphoton.2010.186
24 Bao Q, Loh K P. Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano, 2012, 6(5): 3677–3694
https://doi.org/10.1021/nn300989g pmid: 22512399
25 Hu Y, Pantouvaki M, Van Campenhout J, Brems S, Asselberghs I, Huyghebaert C, Absil P, Van Thourhout D. Broadband 10 Gb/s operation of graphene electro-absorption modulator on silicon. Laser & Photonics Reviews, 2016, 10(2): 307–316
https://doi.org/10.1002/lpor.201500250
26 Yu L, Xu Y, Shi Y, Dai D. Linear and nonlinear optical absorption of on-chip silicon-on-insulator nanowires with graphene. In: Proceedings of Asia Communications and Photonics Conference, 2012: AS1B. 3-1–AS1B. 3-3
27 Gu T, Petrone N, McMillan J F, van der Zande A, Yu M, Lo G Q, Kwong D L, Hone J, Wong C W. Regenerative oscillation and four-wave mixing in graphene optoelectronics. Nature Photonics, 2012, 6(8): 554–559
https://doi.org/10.1038/nphoton.2012.147
28 Yu L, Zheng J, Xu Y, Dai D, He S. Local and nonlocal optically induced transparency effects in graphene-silicon hybrid nanophotonic integrated circuits. ACS Nano, 2014, 8(11): 11386–11393
https://doi.org/10.1021/nn504377m pmid: 25372937
29 Lee J M, Kim D J, Kim G H, Kwon O K, Kim K J, Kim G. Controlling temperature dependence of silicon waveguide using slot structure. Optics Express, 2008, 16(3): 1645–1652
https://doi.org/10.1364/OE.16.001645 pmid: 18542243
30 Pollnau M. Rare-earth-ion-doped channel waveguide lasers on silicon. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(1): 1602512-1–1602512-12
https://doi.org/10.1109/JSTQE.2014.2351811
31 Chen S, Shi Y, He S, Dai D. Low-loss and broadband 2 × 2 silicon thermo-optic Mach-Zehnder switch with bent directional couplers. Optics Letters, 2016, 41(4): 836–839
pmid: 26872201
32 Alam M Z, Meier J, Aitchison J S, Mojahedi M. Super mode propagation in low index medium. In: Proceedings of Quantum Electronics and Laser Science Conference, 2007, JThD112-1–JThD112-2
33 Oulton R F, Sorger V J, Genov D A, Pile D F P, Zhang X. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nature Photonics, 2008, 2(8): 496–500
https://doi.org/10.1038/nphoton.2008.131
34 Fujii M, Leuthold J, Freude W. Dispersion relation and loss of subwavelength confined mode of metal-dielectric-gap optical waveguides. IEEE Photonics Technology Letters, 2009, 21(6): 362–364
https://doi.org/10.1109/LPT.2008.2011995
35 Dai D, He S. A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement. Optics Express, 2009, 17(19): 16646–16653
https://doi.org/10.1364/OE.17.016646 pmid: 19770880
36 Dai D, He S. Low-loss hybrid plasmonic waveguide with double low-index nano-slots. Optics Express, 2010, 18(17): 17958–17966
https://doi.org/10.1364/OE.18.017958 pmid: 20721182
37 Dai D, Shi Y, He S, Wosinski L, Thylen L. Gain enhancement in a hybrid plasmonic nano-waveguide with a low-index or high-index gain medium. Optics Express, 2011, 19(14): 12925–12936
https://doi.org/10.1364/OE.19.012925 pmid: 21747445
38 Kwon M S. Metal-insulator-silicon-insulator-metal waveguides compatible with standard CMOS technology. Optics Express, 2011, 19(9): 8379–8393
https://doi.org/10.1364/OE.19.008379 pmid: 21643089
39 Kim J T. CMOS-compatible hybrid plasmonic slot waveguide for on-chip photonic circuits. IEEE Photonics Technology Letters, 2011, 23(20): 1481–1483
https://doi.org/10.1109/LPT.2011.2163500
40 Zhu S, Liow T Y, Lo G Q, Kwong D L. Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration. Optics Express, 2011, 19(9): 8888–8902
https://doi.org/10.1364/OE.19.008888 pmid: 21643142
41 Bian Y, Zheng Z, Zhao X, Liu L, Su Y L, Liu J, Zhu J, Zhou T. Hybrid plasmonic waveguide incorporating an additional semiconductor stripe for enhanced optical confinement in the gap region. Journal of Optics, 2013, 15(3): 035503-1–035503-9
https://doi.org/10.1088/2040-8978/15/3/035503
42 Amirhosseini A, Safian R. A hybrid plasmonic waveguide for the propagation of surface plasmon polariton at 1.55 mm on SOI substrate. IEEE Transactions on Nanotechnology, 2013, 12(6): 1031–1036
https://doi.org/10.1109/TNANO.2013.2263987
43 Alam M Z, Meier J, Aitchison J S, Mojahedi M. Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends. Optics Express, 2010, 18(12): 12971–12979
https://doi.org/10.1364/OE.18.012971 pmid: 20588426
44 Goykhman I, Desiatov B, Levy U. Experimental demonstration of locally oxidized hybrid silicon-plasmonic waveguide. Applied Physics Letters, 2010, 97(14): 141106-1–141106-3
https://doi.org/10.1063/1.3496463
45 Wu H, Guan X, Dai D. Ultracompact on-chip long-wave photodetector based on hybrid plasmonic waveguides. In: Proceedings of Piers, Session 1P4a SC2: Plasmonic Nanophotonics 1—Experiment, Measurement and Fabrication, 2014, 90
46 Niklaus F, Stemme G, Lu J Q, Gutmann R J. Adhesive wafer bonding. Journal of Applied Physics, 2006, 99(3): 031101-1–031101-28
47 Keyvaninia S, Muneeb M, Stanković S, Van Veldhoven P J, Van Thourhout D, Roelkens G. Ultra-thin DVS-BCB adhesive bonding of III-V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate. Optical Materials Express, 2013, 3(1): 35–46
https://doi.org/10.1364/OME.3.000035
48 Fu X, Cheng J, Huang Q, Hu Y, Xie W, Tassaert M, Verbist J, Ma K, Zhang J, Chen K, Zhang C, Shi Y, Bauwelinck J, Roelkens G, Liu L, He S. 5 ´ 20 Gb/s heterogeneously integrated III-V on silicon electro-absorption modulator array with arrayed waveguide grating multiplexer. Optics Express, 2015, 23(14): 18686–18693
https://doi.org/10.1364/OE.23.018686 pmid: 26191928
49 Huang Q, Cheng J, Liu L, Tang Y, He S. Ultracompact tapered coupler for the Si/III-V heterogeneous integration. Applied Optics, 2015, 54(14): 4327–4332
https://doi.org/10.1364/AO.54.004327 pmid: 25967484
50 Gösele U, Bluhm Y, Kästner G, Kopperschmidt P, Kräuter G, Scholz R, Schumacher A, Senz S, Tong Q Y, Huang L J, Chao Y L, Lee T H. Fundamental issues in wafer bonding. Journal of Vacuum Science & Technology A, Vacuum, Surfaces, and Films, 1999, 17(4): 1145–1152
https://doi.org/10.1116/1.581788
51 Liang D, Roelkens G, Baets R, Bowers J E. Hybrid integrated platforms for silicon photonics. Materials (Basel), 2010, 3(3): 1782–1802
52 Liang D, Bowers J E. Highly efficient vertical outgassing channels for low-temperature InP-to-silicon direct wafer bonding on the silicon-on-insulator (SOI) substrate. Journal of Vacuum Science & Technology B Microelectronics and Nanometer Structures, 2008, 26(4): 1560–1568
https://doi.org/10.1116/1.2943667
53 Liang D, Fiorentino M, Okumura T, Chang H H, Spencer D T, Kuo Y H, Fang A W, Dai D, Beausoleil R G, Bowers J E. Electrically-pumped compact hybrid silicon microring lasers for optical interconnects. Optics Express, 2009, 17(22): 20355–20364
https://doi.org/10.1364/OE.17.020355 pmid: 19997264
54 Liang D, Fiorentino M, Srinivasan S, Todd S T, Kurczveil G, Bowers J E, Beausoleil R G. Optimization of hybrid silicon microring lasers. IEEE Photonics Journal, 2011, 3(3): 580–587
55 Liang D, Srinivasan S, Fiorentino M, Kurczveil G, Bowers J E, Beausoleil R G. Optimization of hybrid silicon microring lasers. IEEE Photonics Journal, 2011, 3(3): 580–587
56 Zhang C, Liang D, Kurczveil G, Bowers J E, Beausoleil R G. Thermal management of hybrid silicon ring lasers for high temperature operation. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(6): 1–7
57 Zhang C, Liang D, Li C, Kurczveil G, Bowers J E, Beausoleil R G. High-speed hybrid silicon microring lasers. In: Proceedings of 2015 IEEE 58th International Midwest Symposium on Circuits and Systems (MWSCAS), 2015, 1–4
58 Ayers J E. Heteroepitaxy of Semiconductors: Theory, Growth, and Characterization. New York: CRC Press, 2007
59 Hossain N, Sweeney S J, Rogowsky S, Ostendorf R, Wagner J, Liebich S, Zimprich M, Volz K, Kunert B, Stolz W. Reduced threshold current dilute nitride Ga(NAsP)/GaP quantum well lasers grown by MOVPE. Electronics Letters, 2011, 47(16): 931–933
https://doi.org/10.1049/el.2011.1927
60 Reboul J R, Cerutti L, Rodriguez J B, Grech P, Tournié E. Continuouswave operation above room temperature of GaSb-based laser diodes grown on Si. Applied Physics Letters, 2011, 99(12): 121113-1–121113-3
https://doi.org/10.1063/1.3644983
61 Chen R, Tran T T D, Ng K W, Ko W S, Chuang L C, Sedgwick F G, Chang-Hasnain C. Nanolasers grown on silicon. Nature Photonics, 2011, 5(3): 170–175
https://doi.org/10.1038/nphoton.2010.315
62 Wang Z, Tian B, Paladugu M, Pantouvaki M, Le Thomas N, Merckling C, Guo W, Dekoster J, Van Campenhout J, Absil P, Van Thourhout D. Polytypic InP nanolaser monolithically integrated on (001) silicon. Nano Letters, 2013, 13(11): 5063–5069
https://doi.org/10.1021/nl402145r pmid: 24073748
63 Chen S M, Tang M C, Wu J, Jiang Q, Dorogan V G, Benamara M, Mazur Y I, Salamo G J, Seeds A J, Liu H. 1.3 mm InAs/GaAs quantum-dot laser monolithically grown on Si substrates operating over 100°C. Electronics Letters, 2014, 50(20): 1467–1468
https://doi.org/10.1049/el.2014.2414
64 Wang T, Liu H, Lee A, Pozzi F, Seeds A. 1.3-mm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates. Optics Express, 2011, 19(12): 11381–11386
https://doi.org/10.1364/OE.19.011381 pmid: 21716368
65 del Alamo J A. Nanometre-scale electronics with III-V compound semiconductors. Nature, 2011, 479(7373): 317–323
https://doi.org/10.1038/nature10677 pmid: 22094691
66 Rouvière M, Halbwax M, Cercus J, Cassan E, Vivien L, Pascal D, Heitzmann M, Hartmann J, Laval S. Integration of germanium waveguide photodetectors for intrachip optical interconnects. Optical Engineering (Redondo Beach, Calif.), 2005, 44(7): 075402–075406
https://doi.org/10.1117/1.1950067
67 Kang Y, Liu H, Morse M, Paniccia M J, Zadka M, Litski S, Sarid G, Pauchard A, Kuo Y, Chen H, Sfar Zaoui W, Bowers J E, Beling A, McIntosh D C, Zheng X, Campbell J C. Monolithic Ge/Si avalanche photodiodes with 340 GHz gain-bandwidth product. Nature Photonics, 2009, 3(1): 59–63
https://doi.org/10.1038/nphoton.2008.247
68 Koester S J, Schaub J D, Dehlinger G, Chu J O. Germanium-on-SOI infrared detectors for integrated photonic applications. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(6): 1489–1502
https://doi.org/10.1109/JSTQE.2006.883160
69 Michel J, Liu J, Kimerling L C. High performance Ge-on-Si photodetectors. Nature Photonics, 2010, 4(8): 527–534
https://doi.org/10.1038/nphoton.2010.157
70 Hawkins A R, Wu W, Abraham P, Streubel K, Bowers J E. High gain-bandwidth-product silicon heterointerface photodetector. Applied Physics Letters, 1997, 70(3): 303–305
https://doi.org/10.1063/1.118399
71 Dai D, Piels M, Bowers J E. Monolithic germanium/silicon photodetectors with decoupled structures: resonant APDs and UTC photodiodes. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(6): 43–56
72 Duan N, Liow T Y, Lim A E, Ding L, Lo G Q. 310 GHz gain-bandwidth product Ge/Si avalanche photodetector for 1550 nm light detection. Optics Express, 2012, 20(10): 11031–11036
https://doi.org/10.1364/OE.20.011031 pmid: 22565725
73 Virot L, Vivien L, Fédéli J M, Bogumilowicz Y, Hartmann J M, Bœuf F, Crozat P, Marris-Morini D, Cassan E. High-performance waveguide-integrated germanium PIN photodiodes for optical communication applications. Photonics Research, 2013, 1(3): 140–147
https://doi.org/10.1364/PRJ.1.000140
74 Dai D, Chen H, Bowers J E, Kang Y, Morse M, Paniccia M J. Equivalent circuit model of a waveguide-type Ge/Si avalanche photodetector. Physica Status Solidi, 2010, 7(10): 2532–2535
https://doi.org/10.1002/pssc.200983874
75 Ramaswamy A, Piels M, Nunoya N, Yin T, Bowers J E. High power silicon-germanium photodiodes for microwave photonic applications. IEEE Transactions on Microwave Theory and Techniques, 2010, 58(11): 3336–3343
https://doi.org/10.1109/TMTT.2010.2076630
76 Piels M, Bowers J E. Si/Ge uni-traveling carrier photodetector. Optics Express, 2012, 20(7): 7488–7495
https://doi.org/10.1364/OE.20.007488 pmid: 22453428
77 Liu J, Sun X, Camacho-Aguilera R, Kimerling L C, Michel J. Ge-on-Si laser operating at room temperature. Optics Letters, 2010, 35(5): 679–681
pmid: 20195317
78 Jenkins D W, Dow J D. Electronic properties of metastable GexSn1-<?Pub Caret?>x alloys. Physical Review B: Condensed Matter and Materials Physics, 1987, 36(15): 7994–8000
79 Low K L, Yang Y, Han G, Fan W, Yeo Y. Electronic band structure and effective mass parameters of Ge1−xSnx alloys. Journal of Applied Physics, 2012, 112(10): 103715-1–103715-9
80 Gupta S, Magyari-Köpe B, Nishi Y, Saraswat K C. Achieving direct band gap in germanium through integration of Sn alloying and external strain. Journal of Applied Physics, 2013, 113(7): 073707-1–073707-7
81 He G, Atwater H A. Interband transitions in SnxGe1−x alloys. Physical Review Letters, 1997, 79(10): 1937–1940
82 Grzybowski G, Beeler R T, Jiang L, Smith D J, Kouvetakis J, Menéndez J. Next generation of Ge1−ySny (y= 0.01−0.09) alloys grown on Si (100) via Ge3H8 and SnD4: reaction kinetics and tunable emission. Applied Physics Letters, 2012, 101(7): 072105-1–072105-5
83 Chen R, Lin H, Huo Y, Hitzman C, Kamins T I, Harris J S. Increased photoluminescence of strain-reduced, high-Sn composition Ge1-xSnx alloys grown by molecular beam epitaxy. Applied Physics Letters, 2011, 99(18): 181125-1–181125-3
84 Wirths S, Geiger R, von den Driesch N, Mussler G, Stoica T, Mantl S, Ikonic Z, Luysberg M, Chiussi S, Hartmann J M, Sigg H, Faist J, Buca D, Grützmacher D. Lasing in direct-bandgap GeSn alloy grown on Si. Nature Photonics, 2015, 9(2): 88–92
85 Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L. Ultrahigh electron mobility in suspended graphene. Solid State Communications, 2008, 146(9-10): 351–355
https://doi.org/10.1016/j.ssc.2008.02.024
86 Xia F, Mueller T, Lin Y M, Valdes-Garcia A, Avouris P. Ultrafast graphene photodetector. Nature Nanotechnology, 2009, 4(12): 839–843
https://doi.org/10.1038/nnano.2009.292 pmid: 19893532
87 Bao Q, Zhang H, Ni Z, Wang Y, Polavarapu L, Shen Z, Xu Q, Tang D, Loh K P. Monolayer graphene as a saturable absorber in a mode-locked laser. Nano Research, 2011, 4(3): 297–307
https://doi.org/10.1007/s12274-010-0082-9
88 Yu L, Dai D, He S. Graphene-based transparent flexible heat conductor for thermally tuning nanophotonic integrated devices. Applied Physics Letters, 2014, 105(25): 251104-1–251104-5
https://doi.org/10.1063/1.4905002
89 Yang B, Yang L, Hu R, Sheng Z, Dai D, Liu Q, He S. Fabrication and characterization of small optical ridge waveguides based on SU-8 polymer. Journal of Lightwave Technology, 2009, 27(18): 4091–4096
https://doi.org/10.1109/JLT.2009.2022285
90 Koos C, Leuthold J, Freude W, Kohl M, Dalton L R, Bogaerts W, Giesecke A L, Lauermann M, Melikyan A, Koeber S, Wolf S, Weimann C, Muehlbrandt S, Koehnle K, Pfeifle J, Palmer R, Alloatti L, Elder D L, Wahlbrink T, Bolten J.Silicon-organic hybrid (SOH) and plasmonic-organic hybrid (POH) integration. In: Proceedings of Optical Fiber Communication Conference and Exhition, 2015, Tu2A.1-1–Tu2A.1-3
91 Wang X, Xiao S, Zheng W, Wang F, Li Y, Hao Y, Jiang X, Wang M, Yang J. Athermal silicon arrayed waveguide grating with polymer-filled slot structure. Optics Communications, 2009, 282(14): 2841–2844
https://doi.org/10.1016/j.optcom.2009.04.020
92 Lee J M, Kim D J, Ahn H, Park S H, Kim G. Temperature dependence of silicon nanophotonic ring resonator with a polymeric overlayer. Journal of Lightwave Technology, 2007, 25(8): 2236–2243
https://doi.org/10.1109/JLT.2007.899792
93 Teng J, Dumon P, Bogaerts W, Zhang H, Jian X, Han X, Zhao M, Morthier G, Baets R. Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides. Optics Express, 2009, 17(17): 14627–14633
https://doi.org/10.1364/OE.17.014627 pmid: 19687941
94 Lauermann M, Palmer R, Koeber S, Schindler P C, Korn D, Wahlbrink T, Bolten J, Waldow M, Elder D L, Dalton L R, Leuthold J, Freude W, Koos C. Low-power silicon-organic hybrid (SOH) modulators for advanced modulation formats. Optics Express, 2014, 22(24): 29927–29936
pmid: 25606923
95 Koeber S, Palmer R, Lauermann M, Heni W, Elder D L, Korn D, Woessner M, Alloatti L, Koenig S, Schindler P, Yu H, Bogaerts W, Dalton L R, Freude W, Leuthold J, Koos C.Femtojoule electro-optic modulation using a silicon-organic hybrid device. Light: Science Application, 2015, 4(2): e255-1–e255-8
97 Haffner C, Heni W, Fedoryshyn Y, Niegemann J, Melikyan A, Elder D L, Baeuerle B, Salamin Y, Josten A, Koch U, Hoessbacher C, Ducry F, Juchli L, Emboras A, Hillerkuss D, Kohl M, Dalton L R, Hafner C, Leuthold J. All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale. Nature Photonics, 2015, 9(8): 525–528
96 Korn D, Lauermann M, Koeber S, Appel P, Alloatti L, Palmer R, Dumon P, Freude W, Leuthold J, Koos C. Lasing in silicon-organic hybrid waveguides. Nature communications, 2016, 7: 10864-1–10864-9
98 Lauermann M, Wolf S, Palmer R, Bielik A, Altenhain L, Lutz J, Schmid R, Wahlbrink T, Bolten J, Giesecke A L, Freude W, Koos C.64 GBd operation of a silicon-organic hybrid modulator at elevated temperature. In: Proceedings of Optical Fiber Communication Conference and Exhibition, 2015: Tu2A.5-1–Tu2A.5-3
[1] Rashad F. KAHWAGI, Sean T. THORNTON, Ben SMITH, Ghada I. KOLEILAT. Dimensionality engineering of metal halide perovskites[J]. Front. Optoelectron., 2020, 13(3): 196-224.
[2] Chuyu ZHONG, Junying LI, Hongtao LIN. Graphene-based all-optical modulators[J]. Front. Optoelectron., 2020, 13(2): 114-128.
[3] Petri MUSTONEN, David M. A. MACKENZIE, Harri LIPSANEN. Review of fabrication methods of large-area transparent graphene electrodes for industry[J]. Front. Optoelectron., 2020, 13(2): 91-113.
[4] Cong SHEN, Peili LI, Xinyuan ZHU, Yuanfang ZHANG, Yaqiao HAN. Ultra-flat broadband microwave frequency comb generation based on optical frequency comb with a multiple-quantum-well electro-absorption modulator in critical state[J]. Front. Optoelectron., 2019, 12(4): 382-391.
[5] Love KUMAR, Amarpal SINGH, Vishal SHARMA. Analysis on multiple optical line terminal passive optical network based open access network[J]. Front. Optoelectron., 2019, 12(2): 208-214.
[6] Chenhao WAN, Guanghao RUI, Jian CHEN, Qiwen ZHAN. Detection of photonic orbital angular momentum with micro- and nano-optical structures[J]. Front. Optoelectron., 2019, 12(1): 88-96.
[7] Zidong ZHANG, Juehan YANG, Fuhong MEI, Guozhen SHEN. Longitudinal twinning α-In2Se3 nanowires for UV-visible-NIR photodetectors with high sensitivity[J]. Front. Optoelectron., 2018, 11(3): 245-255.
[8] Chong ZHAO, Qixin WAN, Jiangnan DAI, Jun ZHANG, Feng WU, Shuai WANG, Hanling LONG, Jingwen CHEN, Cheng CHEN, Changqing CHEN. Diluted magnetic characteristics of Ni-doped AlN films via ion implantation[J]. Front. Optoelectron., 2017, 10(4): 363-369.
[9] Xi WANG,Jun CHANG,Yajun NIU,Xiaoyu DU,Ke ZHANG,Guijuan XIE,Bochuan ZHANG. Design and demonstration of a foveated imaging system with reflective spatial light modulator[J]. Front. Optoelectron., 2017, 10(1): 89-94.
[10] Jingtao XIN,Zhehai ZHOU,Xiaoping LOU,Mingli DONG,Lianqing ZHU. Transformation of Laguerre-Gaussian beam by a ring-lens[J]. Front. Optoelectron., 2017, 10(1): 9-13.
[11] Xiaoying HE,Min XU,Xiangchao ZHANG,Hao ZHANG. A tutorial introduction to graphene-microfiber waveguide and its applications[J]. Front. Optoelectron., 2016, 9(4): 535-543.
[12] Liu YANG,Fengguang LUO. Novel frequency shift keying modulation based on fiber Bragg gratings and intensity modulators[J]. Front. Optoelectron., 2016, 9(4): 616-620.
[13] Yu XIANG,Shilong PAN. GaAs-based polarization modulators for microwave photonic applications[J]. Front. Optoelectron., 2016, 9(3): 497-507.
[14] Zhenzhou CHENG,Changyuan QIN,Fengqiu WANG,Hao HE,Keisuke GODA. Progress on mid-IR graphene photonics and biochemical applications[J]. Front. Optoelectron., 2016, 9(2): 259-269.
[15] Bat-El COHEN,Lioz ETGAR. Parameters that control and influence the organo-metal halide perovskite crystallization and morphology[J]. Front. Optoelectron., 2016, 9(1): 44-52.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed