Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2017, Vol. 10 Issue (2) : 160-165    https://doi.org/10.1007/s12200-016-0637-9
RESEARCH ARTICLE
Generation and transmission analysis of 4-ary frequency shift keying based on dual-parallel Mach-Zehnder modulator
Liu YANG, Fengguang LUO()
National Engineering Laboratory for Next Generation Internet Access System, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(366 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We proposed an optical 4-ary frequency shift keying (FSK) modulation scheme applying dual-parallel Mach-Zehnder (MZ) modulator. The 4-ary FSK based on the single-side-band modulation scheme can greatly lower the transmission speed in each sub-carriers and increase the transmission performance, comparing with the 2-FSK signal. The transmission performance of the 4-ary FSK was demonstrated after a 50 km single mode fiber. The results showed that the 4-ary FSK can realize error-free transmission. Moreover, we analyzed the influence of factors (such as disperse compensation and demodulation bandwidth) on the transmission performance in this paper. The analysis of the influenced factors can provide a theoretical basic for experiment.

Keywords 4-ary frequency shift keying (FSK)      modulation scheme      disperse compensation     
Corresponding Author(s): Fengguang LUO   
Just Accepted Date: 30 September 2016   Online First Date: 27 October 2016    Issue Date: 05 July 2017
 Cite this article:   
Liu YANG,Fengguang LUO. Generation and transmission analysis of 4-ary frequency shift keying based on dual-parallel Mach-Zehnder modulator[J]. Front. Optoelectron., 2017, 10(2): 160-165.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-016-0637-9
https://academic.hep.com.cn/foe/EN/Y2017/V10/I2/160
Fig.1  Structure of dual-parallel FSK modulation and the scheme of 4-ary FSK modulation
Fig.2  Structure of 4-ary FSK transmission. PRBS: pseudo random binary sequence, RF: radio frequency, EDFA: Erbium doped fiber amplifier, SSMF: standard single mode fiber, DCF: dispersion compensation fiber, PD: photodiode, BERT: bit error rate tester
Fig.3  Spectrums of A-E points in Fig. 2
Fig.4  Transmission performance of 4-ary FSK signal after 50 km SSMF and 10 km DCF. The dispersion slop of DCF is (a) -0.375 ps/nm2/km and (b) 0.26 ps/nm2/km
Fig.5  Transmission performances of 4-ary FSK signal under different (a) dispersion slop compensations and (b) different dispersion compensations
Fig.6  Transmission performance of 4-ary FSK signal under different modulation and demodulation bandwidths
Fig.7  BER performance versus received power
Fig.8  Received power versus the deviation of central frequency
1 Shao  Y, Chi  N, Hou  C, Fang  W , Zhang J,HuangB,Li X,Zou S,LiuX,ZhengX,ZhangN,FangY,ZhuJ,TaoL,HuangD. A novel return-to-zero FSK format for 40-Gb/s transmission system application. Journal of Lightwave Technology, 2010, 28(12): 1770–1782
https://doi.org/10.1109/JLT.2010.2048413
2 Li  M, Chi  N, Hong  W, Zhang  X, Li  W, Huang  D. Investigation of high-speed optical FSK generation scheme based on carrier suppression and phase modulation. Optics Communications, 2009, 282(4): 508–517
https://doi.org/10.1016/j.optcom.2008.10.064
3 Zhang  J, Chi  N, Holm-Nielsen  P V, Peucheret  C, Jeppesen  P. An optical FSK transmitter based on an integrated DFB laser-EA modulator and application in optical labeling. IEEE Photonics Technology Letters, 2003, 15(7): 984–986
https://doi.org/10.1109/LPT.2003.813415
4 Kawanishi  T, Higuma  K, Fujita  T, Ichikawa  J, Sakamoto  T, Shinada  S, Izutsu  M. High-speed optical FSK modulator for optical packet labeling. Journal of Lightwave Technology, 2005, 23(1): 87–94
https://doi.org/10.1109/JLT.2004.840353
5 Yang  L, Luo  F. Novel FSK format for 40 Gb/s transmission using FSK modulator. Optics Communications, 2016, 363C: 104–109
https://doi.org/10.1016/j.optcom.2015.11.008
6 Li  Y, Zhang  Y, Huang  Y, Yuan  X, Zhang  J, Ding  D. A novel 64-QAM optical transmitter driven by binary signal. Optik (Stuttgart), 2015, 126(23): 4401–4404
https://doi.org/10.1016/j.ijleo.2015.08.204
7 Stevens  M L, Boroson  D M. A simple delay-line 4-PPM demodulator with near-optimum performance.  Optics Express, 2012, 20(5): 5270–5280
https://doi.org/10.1364/OE.20.005270 pmid: 22418333
8 Lu Y, Liu  H, Zhou  Q, Ma  J, Wei  Y, Li  Q. A smooth evolution to next generation PON based on pulse position modulation (PPM). IEEE Photonics Technology Letters, 2015, 27(2): 173–176
https://doi.org/10.1109/LPT.2014.2364192
9 Jia  Z, Chien  H, Zhang  J, Cai  Y, Yu  J. Performance comparison of dual-carrier 400G with 8/16/32-QAM modulation formats. IEEE Photonics Technology Letters, 2015, 27(13): 1414–1417
https://doi.org/10.1109/LPT.2015.2423613
10 Liu  X, Chandrasekhar  S, Wood  T H, Tkach  R W, Winzer  P J, Burrows  E C, Chraplyvy  A R. M-ary pulse-position modulation and frequency-shift keying with additional polarization/phase modulation for high-sensitivity optical transmission.  Optics Express, 2011, 19(26): B868–B881
https://doi.org/10.1364/OE.19.00B868 pmid: 22274115
11 Kikuchi  K, Osaki  M. Highly-sensitive coherent optical detection of M-ary frequency-shift keying signal. Optics Express, 2011, 19(26): B32–B39
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed