Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2017, Vol. 10 Issue (2) : 174-179    https://doi.org/10.1007/s12200-016-0638-8
RESEARCH ARTICLE
Dynamic spot tracking system based on 2D galvanometer in free space optical communication for short distance
Qingshan JIANG1, Ciling ZENG2, Fengqiang GU3, Ming ZHAO1()
1. School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
2. State Grid Hunan Electric Power Company, Changsha 410007, China
3. Beijing Kedong Power Control System Co Ltd, Beijing 100192, China
 Download: PDF(309 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Dynamic tracking of laser spot is a key process in the establishment of free space optical communication. In this paper, a dynamic tracking system was presented. In this system, a two-dimensional (2D) galvanometer was used to change the angle of the optical axis of the incident beam at a certain scanning frequency as optical signal jitter simulator, and another galvanometer was used to track the jitter with quadrant detector (QD) and data processing module to acquire the position information of laser spot. Results indicated that the tracking accuracy of this system mainly composed of 2D galvanometer was as high as 27.8 μrad, and its linear deviation was less than 0.013. The system could still keep the dynamic tracking of the spot stable when the jitter frequency of the optical signal was less than 1000 Hz. Those results suggested that this system could be suitable for the short distance in free space communication due to its simple structure, easy to control and low cost compared with conventional system.

Keywords free space optical communication      dynamic tracking      optical signal jitter      two-dimensional (2D) galvanometer     
Corresponding Author(s): Ming ZHAO   
Just Accepted Date: 14 September 2016   Online First Date: 17 October 2016    Issue Date: 05 July 2017
 Cite this article:   
Qingshan JIANG,Ciling ZENG,Fengqiang GU, et al. Dynamic spot tracking system based on 2D galvanometer in free space optical communication for short distance[J]. Front. Optoelectron., 2017, 10(2): 174-179.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-016-0638-8
https://academic.hep.com.cn/foe/EN/Y2017/V10/I2/174
Fig.1  Block diagram of spot dynamic tracking system
Fig.2  Distribution of spot in I, II, III, IV quadrants received by QD
Fig.3  Adjustment of the beam
Fig.4  (a) Optical power is 0.2 mW; (b) optical power is 0.3 mW
groups x/pixel y/pixel error /pixel
before tracking after
tracking
before tracking after
tracking
x y
1 455.11 456.05 375.24 376.13 0.94 0.89
2 468.38 467.45 413.54 414.41 0.93 0.87
3 523.84 524.74 399.85 400.73 0.90 0.88
4 500.07 499.16 401.48 402.36 0.91 0.88
Tab.1  Comparison of spot-center before and after tracking
Fig.5  (a) Before tracking (normal); (b) missing target; (c) after tracking (back to normal)
Fig.6  Jitter suppression of this proposed system when (a) f = 100 Hz, (b) f = 1000 Hz and (c) f = 1100 Hz
1 Zhao X, Tong  S, Liu Y ,  Song Y, Jiang H . Technology on spot detection and tracking based on four-quadrant detector. Chinese Journal of Lasers, 2010, 37(7): 1756–1761
https://doi.org/10.3788/CJL20103707.1756
2 Zhang Z. Spot position detection technology based on QD. Changchun: Changchun University of Science and Technology, 2014, 21–22
3 Yue B, Yang  W, Fu C . Experiments on precision tracking system with a fast steering mirror in space laser communication. Opto-Electronic Engineering, 2002, 29(3): 35–37
4 Li M, Ai  Y, Cao Y . Research of fine tracking servo system for FSO terminal. Laser Technology, 2009, 33(3): 262–265
5 Shao B, Sun  L, Qu D ,  Wang J, Qin  C. Research on the key technology of ATP system for free space optical communication. Piezoelectrics & Acoustooptics, 2005, 27(4): 431–433
6 Dong R, Ai  Y, Xiao Y ,  Shan X. Design and communication experiment of fine tracking system for free space optic. Hongwai Yu Jiguang Gongcheng, 2012, 41(10): 2718–2722
7 Zhou H, Ai  Y, Shan X ,  Dai Y. Identification of fine tracking system for free space optical communications. Hongwai Yu Jiguang Gongcheng, 2015, 44(2): 736–740
8 Xu L. The design of scanning control system based on 2D laser galvanometer. Changchun: Changchun University of Science and Technology, 2012, 13–15
9 Lu J. Research of on the determination of the spot position of the four quadrant detector. Technology Trend, 2009, 10(1): 222–224 (in Chinese)
10 Wei L. The reaserch and realization of APT system for laser space communication system. Wuhan: Huazhong University of Science and Technology, 2010, 39–44
11 Han C, Bai  B, Yang H ,  Tong S, Jiang  H, Fan J . Study four-quadrant detector in the free space laser communication. Chinese Journal of Lasers, 2009, 36(8): 2030–2034
https://doi.org/10.3788/CJL20093608.2030
12 Wang L. Technology research on fine tracking in space laser communication system. Optical Communication Technology, 2014, 3: doi:10.13921/j.cnki.issn1002-5561.2014.03.017
13 Ke Y. Measurement system design and experimental research with high accuracy for laser beam quality. Wuhan: Huazhong University of Science and Technology, 2015, 16–18
[1] Mzee S. MNDEWA, Xiuhua YUAN, Dexiu HUANG. Evaluation of light beams for short and medium range wireless communications[J]. Front Optoelec Chin, 2009, 2(4): 393-396.
[2] Mzee S. MNDEWA, Xiuhua YUAN, Dexiu HUANG, Bangxu LI. Effects of light propagation in middle intensity atmospheric turbulence[J]. Front Optoelec Chin, 2009, 2(3): 312-317.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed