Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2017, Vol. 10 Issue (1) : 51-56    https://doi.org/10.1007/s12200-017-0564-4
RESEARCH ARTICLE
Slab Yb:YAG pulse amplifier with high amplification gain and signal-to-noise ratio
Jun LIU1, Jianguo XIN1(), Ye LANG1, Jiabin CHEN2
1. School of Optoelectronics, Beijing Institute of Technology, Beijing 100081, China
2. School of Automation, Beijing Institute of Technology, Beijing 100081, China
 Download: PDF(381 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This study experimentally investigated a Yb:YAG pulse laser amplifier with a high amplification gain and a high signal-to-noise ratio (SNR). The highest amplification gain of 172 and highest pulse energy of 131 mJ were obtained with the highest SNR of 24.9 dB from a volume gain of 10 mm × 10 mm × 1 mm. The output beam quality values of Mx 2=1.91 in the slow axis and My 2=1.58 in the fast axis were also achieved.

Keywords laser amplifiers      ytterbium lasers      diode-pumped lasers      signal-to-noise ratio (SNR)     
Corresponding Author(s): Jianguo XIN   
Online First Date: 29 December 2016    Issue Date: 17 March 2017
 Cite this article:   
Jun LIU,Jianguo XIN,Ye LANG, et al. Slab Yb:YAG pulse amplifier with high amplification gain and signal-to-noise ratio[J]. Front. Optoelectron., 2017, 10(1): 51-56.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-017-0564-4
https://academic.hep.com.cn/foe/EN/Y2017/V10/I1/51
Fig.1  Experiment setup of the LD end-pumped Yb:YAG pulse laser amplifier
Fig.2  Energy storage efficiency and stored energy versus the ratio of the pumping pulse duration to the lifetime of the upper laser level
Fig.3  ASE noise pulse energy versus the ratio of the pumping pulse duration to the lifetime of the upper energy level for different pumping peak power intensity
Fig.4  Output and ASE noise pulse energies versus the ratio of the pumping pulse duration to the lifetime of the upper laser level
Fig.5  Amplification gain (a) and the ratio of the amplified pulse energy to the ASE noise energy (b) versus the ratio of the pumping pulse duration to the life time of the upper laser level
Fig.6  (a) Far-field intensity distributions of the laser amplifier output; (b) beam transverse profile; (c) intensity distribution in slow axis: experimental data (*) and Gaussian fitting (red curve); (d) intensity distribution in fast axis: experimental data (*) and Gaussian fitting (red curve)
Fig.7  (a) Output pulse width versus input pulse width; (b) pulse waveform of the input pulse and the output pulses. τFWHM denotes the full width at half maximum
1 Lin H, Li  J, Liang X . 105 W,<10 ps, TEM00 laser output based on an in-band pumped Nd:YVO4 Innoslab amplifier. Optics Letters, 2012, 37(13): 2634–2636
https://doi.org/10.1364/OL.37.002634 pmid: 22743478
2 Russbueldt P, Hoffmann  D, Hofer M ,  Lohring J ,  Luttmann J ,  Meissner A ,  Weitenberg J ,  Traub M ,  Sartorius T ,  Esser D ,  Wester R ,  Loosen P ,  Poprawe R . Innoslab amplifiers. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(1): 447–463
https://doi.org/10.1109/JSTQE.2014.2333234
3 Russbueldt P, Mans  T, Weitenberg J ,  Hoffmann H D ,  Poprawe R . Compact diode-pumped 1.1 kW Yb:YAG Innoslab femtosecond amplifier. Optics Letters, 2010, 35(24): 4169–4171
https://doi.org/10.1364/OL.35.004169 pmid: 21165126
4 Yu H, Bourdet  G. Different cooling configurations for a high average power longitudinally diode-pumped Yb:YAG amplifier. Applied Optics, 2006, 45(24): 6205–6211
https://doi.org/10.1364/AO.45.006205 pmid: 16892125
5 Zhu G, Zhu  X, Huang Y ,  Wang H, Zhu  C. Numerical analysis of an end-pumped Yb:YAG thin disk laser with variation of a fractional thermal load. Applied Optics, 2014, 53(19): 4349–4358
https://doi.org/10.1364/AO.53.004349 pmid: 25090000
6 Siebold M, Hein  J, Wandt C ,  Klingebiel S ,  Krausz F ,  Karsch S . High-energy, diode-pumped, nanosecond Yb:YAG MOPA system. Optics Express, 2008, 16(6): 3674–3679
https://doi.org/10.1364/OE.16.003674 pmid: 18542461
7 Loeser M, Siebold  M, Roeser F ,  Schramm U . High energy CPA-free picosecond Yb:YAG amplifier. In: Proceeding of Advanced Solid-State Photonics, OSA Technical Digest Series (CD). California: Optical Society of America, 2012, paper AM4A.16
8 Jun L, Jianguo  X, Ye L ,  Jiabin C . Multiple folded resonator for LD pulse end pumped Q-switched Yb:YAG slab laser. Optics Express, 2014, 22(18): 22157–22162
https://doi.org/10.1364/OE.22.022157 pmid: 25321590
9 Ertel K, Banerjee  S, Mason P D ,  Phillips P J ,  Siebold M ,  Hernandez-Gomez C ,  Collier J C . Optimising the efficiency of pulsed diode pumped Yb:YAG laser amplifiers for ns pulse generation. Optics Express, 2011, 19(27): 26610–26626
https://doi.org/10.1364/OE.19.026610 pmid: 22274245
10 Sekine T, Takeuchi  Y, Kurita T ,  Hatano Y ,  Muramatsu Y ,  Mizuta Y ,  Kabeya Y ,  Tamaoki Y ,  Kato Y. High gain, high efficiency cryogenic Yb:YAG ceramics amplifier for several hundred joules DPSSL. In: Proceeding of Advanced Solid State Lasers, OSA Technical Digest. Massachusetts: Optical Society of America, 2016, paper ATh4A. 1
11 Siebold M, Loeser  M, Roeser F ,  Seltmann M ,  Harzendorf G ,  Tsybin I ,  Linke S ,  Banerjee S ,  Mason P D ,  Phillips P J ,  Ertel K ,  Collier J C ,  Schramm U . High-energy, ceramic-disk Yb:LuAG laser amplifier. Optics Express, 2012, 20(20): 21992–22000
https://doi.org/10.1364/OE.20.021992 pmid: 23037349
12 Bourdet G L. Numerical simulation of a high-average-power diode-pumped ytterbium-doped YAG laser with an unstable cavity and a super-Gaussian mirror. Applied Optics, 2005, 44(6): 1018–1027
https://doi.org/10.1364/AO.44.001018 pmid: 15751693
[1] Xiaonong ZHU, Yanmei LIANG, Youxin MAO, Yaqing JIA, Yiheng LIU, Guoguang MU. Analyses and calculations of noise in optical coherence tomography systems[J]. Front Optoelec Chin, 2008, 1(3-4): 247-257.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed