Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2017, Vol. 10 Issue (1) : 70-79    https://doi.org/10.1007/s12200-017-0660-5
RESEARCH ARTICLE
Cross-correlation frequency-resolved optical gating scheme based on a periodically poled lithium niobate waveguide for an optical arbitrary waveform measurement
Chenwenji WANG,Peili LI(),Yuying GAN,Di CAO,Xiaozheng QIAO,Chen HE
School of Optoelectronic Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
 Download: PDF(567 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This study proposes a novel scheme of a cross-correlation frequency-resolved optical gating (X-FROG) measurement for an optical arbitrary waveform (OAW) based on the sum frequency generation (SFG) effect of a periodically poled lithium niobate (PPLN) waveguide. Based on the SFG effect and combined with the principal component generalized projects algorithm on a matrix, the theory model of the scheme is established. Using Matlab, the proposed OAW measurement X-FROG scheme using the PPLN waveguide is simulated and studied. Simulation results show that a rectangular pulse is a suitable gate pulse because of its low errors. Moreover, the increased complexity of OAW and phase mismatch decrease measurement accuracy.

Keywords optical arbitrary waveform (OAW) measurement      periodically poled lithium niobate (PPLN)      cross-correlation frequency-resolved optical gating (X-FROG)     
Corresponding Author(s): Peili LI   
Online First Date: 24 January 2017    Issue Date: 17 March 2017
 Cite this article:   
Chenwenji WANG,Peili LI,Yuying GAN, et al. Cross-correlation frequency-resolved optical gating scheme based on a periodically poled lithium niobate waveguide for an optical arbitrary waveform measurement[J]. Front. Optoelectron., 2017, 10(1): 70-79.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-017-0660-5
https://academic.hep.com.cn/foe/EN/Y2017/V10/I1/70
Fig.1  Schematic of X-FROG measurement for optical arbitrary waveforms using the PPLN waveguide. OAW: optical arbitrary waveform; LD: laser diode; MZM: Mach-Zehnder modulator; BPG: bit pattern generator; OC: optical coupler; PPLN: periodically poled lithium niobate; TF: tunable filter; CCD: charge-coupled device; OSA: optical spectrum analyzer
Fig.2  Measured X-FROG traces of an arbitrary waveform (TBP= 1.256). (a) Original FROG trace of the signal pulse; (b) retrieved FROG trace of the signal pulse; (c) intensity (blue) and phase (red) of the original FROG trace; (d) intensity and phase of the retrieved FROG trace
Fig.3  Measured X-FROG traces of the arbitrary waveform (TBP= 11.24). (a) Original FROG trace of the signal pulse; (b) retrieved FROG trace of the signal pulse; (c) intensity (blue) and phase (red) of the original FROG trace; (d) intensity and phase of the retrieved FROG trace
Fig.4  Measured X-FROG traces of the arbitrary waveform (TBP= 57.59). (a) Original FROG trace of the signal pulse; (b) retrieved FROG trace of the signal pulse; (c) intensity (blue) and phase (red) of the original FROG trace; (d) intensity and phase of the retrieved FROG trace
Fig.5  Measured X-FROG traces of arbitrary waveform (when the gate pulse is chirped). (a) Original FROG trace of the signal pulse; (b) retrieved FROG trace of the signal pulse; (c) intensity (blue) and phase (red) of the original FROG trace; (d) intensity and phase of the retrieved FROG trace
Fig.6  Measured X-FROG traces of the arbitrary waveform (when the gate pulse is Gaussian). (a) Original FROG trace of the signal pulse; (b) retrieved FROG trace of the signal pulse;(c) intensity (blue) and phase (red) of the original FROG trace; (d) intensity and phase of the retrieved FROG trace
Fig.7  Measured X-FROG traces of the arbitrary waveform (when the gate pulse is rectangular). (a) Original FROG trace of the signal pulse; (b) retrieved FROG trace of the signal pulse; (c) intensity (blue) and phase (red) of the original FROG trace; (d) intensity and phase of the retrieved FROG trace
Fig.8  Measured X-FROG traces of the arbitrary waveform. (a) Original FROG trace of the signal pulse; retrieved FROG trace of the signal pulse when the waveguide length L is (b) 20?mm, (c) 25?mm, and (d) 30?mm; (e) intensity (blue) and phase (red) of the original FROG trace; intensity and phase of the retrieved FROG trace when the waveguide length L is (f) 20?mm, (g) 25?mm, and (h) 30?mm
L/mm A P
20 7.4975 × 1010 0.18436
25 6.7923 × 1010 018365
30 7.9048 × 1010 0.18633
Tab.1  Values of A and P in the case of different L
Fig.9  Measured X-FROG traces of the arbitrary waveform. (a) Original FROG trace of the signal pulse; retrieved FROG trace of the signal pulse when the polarization period mismatched is (b) 0?nm, (c) 3?nm, and (d) 6?nm; (e) intensity (blue) and phase (red) of the original FROG trace; intensity and phase of the retrieved FROG trace when the polarization period mismatching is (f) 0?nm, (g) 3?nm, and (h) 6?nm
Δ Λ /nm A P
0 6.7923 × 10 - 10 0.18365
3 5.9712 × 10-9 0.25371
6 9.4727 × 10-8 0.51026
Tab.2  Values of A and P in the case of different polarization period mismatches Δ Λ
1 Khan M H, Shen H, Xuan Y, Zhao L, Xiao S, Leaird D E, Weiner A M, Qi M. Ultraboard-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper. Nature Photonics, 2010, 4(2): 117–122
https://doi.org/10.1038/nphoton.2009.266
2 Ho Y Y, Qian L. Dynamic arbitrary waveform shaping in a continuous fiber. Optics Letters, 2008, 33(11): 1279–1281
https://doi.org/10.1364/OL.33.001279 pmid: 18516200
3 Wang C, Yao J. Large time-bandwidth product microwave arbitrary waveform generation using a spatially discrete chirped fiber Bragg grating. Journal of Lightwave Technology, 2010, 28(11): 1652–1660
https://doi.org/10.1109/JLT.2010.2047093
4 Supradeepa V R, Leaird D E, Weiner A M. Single shot amplitude and phase characterization of optical arbitrary waveforms. Optics Express, 2009, 17(16): 14434–14443
https://doi.org/10.1364/OE.17.014434 pmid: 19654851
5 Jiang Z, Huang C B, Leaird D E, Weiner A M. Optical arbitrary waveform processing of more than 100 spectral comb lines. Nature Photonics, 2007, 1(8): 463–467
https://doi.org/10.1038/nphoton.2007.139
6 Fontaine N K, Geisler D J, Scott R P, He T, Heritage J P, Yoo S J. Demonstration of high-fidelity dynamic optical arbitrary waveform generation. Optics Express, 2010, 18(22): 22988–22995
https://doi.org/10.1364/OE.18.022988 pmid: 21164638
7 Fatemi F K, Carruthers T F, Lou J W. Characterisation of telecommunications pulse trains by Fourier-transform and dual-quadrature spectral interferometry. Electronics Letters, 2003, 39(12): 921–922
https://doi.org/10.1049/el:20030615
8 Miao H, Leaird D E, Langrock C, Fejer M M, Weiner A M. Optical arbitrary waveform characterization via dual-quadrature spectral shearing interferometry. Optics Express, 2009, 17(5): 3381–3389
https://doi.org/10.1364/OE.17.003381 pmid: 19259175
9 Chen C C, Hsieh I C, Yang S D, Huang C B. Polarization line-by-line pulse shaping for the implementation of vectorial temporal Talbot effect. Optics Express, 2012, 20(24): 27062–27070
https://doi.org/10.1364/OE.20.027062 pmid: 23187562
10 Supradeepa V R, Leaird D E, Weiner A M. Single shot amplitude and phase characterization of optical arbitrary waveforms. Optics Express, 2009, 17(16): 14434–14443
https://doi.org/10.1364/OE.17.014434 pmid: 19654851
11 Lepetit L, Chériaux G, Joffre M. Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy. Journal of the Optical Society of America B, Optical Physics, 1995, 12(12): 2467–2474
https://doi.org/10.1364/JOSAB.12.002467
12 Ferdous F, Leaird D E, Huang C B, Weiner A M. Dual-comb electric-field cross-correlation technique for optical arbitrary waveform characterization. Optics Letters, 2009, 34(24): 3875–3877
https://doi.org/10.1364/OL.34.003875 pmid: 20016643
13 Fontaine N K, Scott R P, Heritage J P, Yoo S J B. Near quantum-limited, single-shot coherent arbitrary optical waveform measurements. Optics Express, 2009, 17(15): 12332–12344
https://doi.org/10.1364/OE.17.012332 pmid: 19654635
14 Geisler D J, Fontaine N K, Scott R P, Paraschis L. Flexible bandwidth arbitrary modulation format, coherent optical transmission system scalable to terahertz BW. In: Proceedings of IEEE 37th European Conference and Exhibition on Optical Communication (ECOC), 2011, 1–3
15 Scott R P, Fontaine N K, Cao J, Okamoto K, Kolner B H, Heritage J P, Yoo S J. High-fidelity line-by-line optical waveform generation and complete characterization using FROG. Optics Express, 2007, 15(16): 9977–9988
https://doi.org/10.1364/OE.15.009977 pmid: 19547348
16 Tien E K, Sang X Z, Feng Q, Qi S, Boyraz O. Ultrafast pulse characterization by cross-phase modulation in silicon waveguide. In: Proceedings of IEEE Lasers and Electro-Optics Society, 2008, 306–307
17 Xu L, Zeek E, Trebino R. Measuring very complex ultrashort pulses using frequency-resolved optical gating (FROG). Topics in Applied Physics, 2004, 95: 231–264
18 Xu L, Zeek E, Trebino R. Simulations of frequency-resolved optical gating for measuring very complex pulses. Journal of the Optical Society of America B, Optical Physics, 2008, 25(6): 70–80
https://doi.org/10.1364/JOSAB.25.000A70
19 Wong T C, Ratner J, Chauhan V, Cohen J, Vaughan P M, Xu L, Consoli A, Trebino R. Simultaneously measuring two ultrashort laser pulses on a single-shot using double-blind frequency-resolved optical gating. Journal of the Optical Society of America B, Optical Physics, 2012, 29(6): 1237–1244
https://doi.org/10.1364/JOSAB.29.001237
20 Pang J. Ultrashort pulse measurement based on microstructure fiber. Dissertation for the Doctoral Degree. Beijing: Beijing University of Posts and Telecommunications, 2012
21 Wong T C, Trebino R. Measuring many-picosecond-long ultrashort pulses on a single shot using XFROG and pulse-front tilt. In: Proceedings of Conference on Lasers and Electro-Optics (CLEO), 2013, 1–2
22 Wu P, Yang S. Spectral phase retrieval by dispersion-distorted frequency-resolved optical gating traces. In: Proceedings of Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), 2013, 1–2
23 Fontaine N K, Scott R P, Zhou L, Soares F M, Heritage J P, Yoo S J B. Real-time full-field arbitrary optical waveform measurement. Nature Photonics, 2010, 4(4): 248–254
https://doi.org/10.1038/nphoton.2010.28
24 Miao H, Yang S D, Langrock C, Roussev R V, Fejer M M, Weiner A M. Ultralow-power second-harmonic generation frequency-resolved optical gating using aperiodically poled lithium niobate waveguides. Journal of the Optical Society of America B, Optical Physics, 2008, 25(6): A41–A53 doi:10.1364/JOSAB.25.000A41
25 Kane D J, Rodriguez G, Taylor A J, Clement T S. Simultaneous measurement of two ultrashort laser pulses from a single spectrogram in a single shot. Journal of the Optical Society of America B, Optical Physics, 1997, 14(4): 935–943
https://doi.org/10.1364/JOSAB.14.000935
26 Geisler D J, Fontaine N K, He T, Scott R P, Paraschis L, Heritage J P, Yoo S J. Modulation-format agile, reconfigurable Tb/s transmitter based on optical arbitrary waveform generation. Optics Express, 2009, 17(18): 15911–15925
https://doi.org/10.1364/OE.17.015911 pmid: 19724590
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed