Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2017, Vol. 10 Issue (2) : 138-143    https://doi.org/10.1007/s12200-017-0663-2
RESEARCH ARTICLE
Coupled two aluminum nanorod antennas for near-field enhancement
Yan DENG(), Jian OU, Jiangying YU, Min ZHANG, Li ZHANG
Department of Mathematics and Physics, Anhui Jianzhu University, Hefei 230601, China
 Download: PDF(246 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Aluminum (Al) plasmonic nanoantennas possess many tunabilities in the ultraviolet (UV) region and have a variety of new applications, such as in sensitive UV photodetection and UV photolithography. Using discrete dipole approximation (DDA), the resonant optical properties and enhanced local field distribution of coupled Al nanorod antennas were investigated. The effects of gap distance on the extinction spectra were analyzed to obtain the surface plasmon modes of these nanostructures across the visible and in the UV spectral range, which can be attributed to the coupling of the surface plasmon modes from each Al nanorod. In addition, the enhanced local field factors plotted as a function of gap distance were simulated under transverse and longitudinal polarizations to achieve maximum near-field enhancement for the optical antennas. When the gap distance was decreased to 5 nm, the maximum value of the enhanced factor was 18.04 at the transverse mode peak of 424 nm. This could be explained by the combination of the interaction between the charges distributed at the opposite ends of two Al nanorods and the interaction between the charges distributed at the lateral sides of each Al nanorod. Results showed that the coupled Al nanorod antennas with enhanced local field show promise for UV plasmonics.

Keywords aluminum (Al) nanorod      optical antennas      surface plasmon resonance (SPR)     
Corresponding Author(s): Yan DENG   
Online First Date: 30 December 2016    Issue Date: 05 July 2017
 Cite this article:   
Yan DENG,Jian OU,Jiangying YU, et al. Coupled two aluminum nanorod antennas for near-field enhancement[J]. Front. Optoelectron., 2017, 10(2): 138-143.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-017-0663-2
https://academic.hep.com.cn/foe/EN/Y2017/V10/I2/138
Fig.1  Extinction spectra for two Al nanorod antennas with increasing gap distance from 5 to 70 nm
Fig.2  Gap effect on extinction spectra of two Al nanorod antennas: (a), (c) transverse plasmon resonance and (b), (d) longitudinal plasmon resonance
Fig.3  Effect of antenna gap size on local field enhancement at (a) transverse plasmon resonance and (b) longitudinal plasmon resonance
Fig.4  Calculated electromagnetic field distributions for the optical antenna with the gap distance of (a) 5 nm at transverse plasmon resonance and (b) 50 nm at longitudinal plasmon resonance
18 Wang J, Walters F, Liu X, Sciortino P, Deng X. High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids. Applied Physics Letters, 2007, 90(6): 061104
https://doi.org/10.1063/1.2437731
19 Burgos S P, de Waele R, Polman A, Atwater H A. A single-layer wide-angle negative-index metamaterial at visible frequencies. Nature Materials, 2010, 9(5): 407–412
https://doi.org/10.1038/nmat2747 pmid: 20400955
20 Zhu J, Li J, Zhao J. Tuning the plasmon band number of aluminum nanorod within the ultraviolet-visible region by gold coating. Physics of Plasmas, 2014, 21(11): 112108
https://doi.org/10.1063/1.4901590
1 Zohrabi M, Mohebbifar M R. Electric field enhancement around gold tip optical antenna. Plasmonics, 2015, 10(4): 887–892 
https://doi.org/10.1007/s11468-014-9876-z
2 Chen P, Liu J, Wang L, Jin K, Yin Y, Li Z. Optimization and maximum potential of optical antennae in near-field enhancement. Applied Optics, 2015, 54(18): 5822–5828
https://doi.org/10.1364/AO.54.005822 pmid: 26193035
21 McMahon J M, Schatza G C, Gray S K. Plasmonics in the ultraviolet with the poor metals Al, Ga, In, Sn, Tl, Pb, and Bi. Physical Chemistry Chemical Physics, 2013, 17(29): 5415–5423 
https://doi.org/10.1039/C3CP43856B 
3 Taminiau T H, Moerland R J, Segerink F B, Kuipers L, van Hulst N F. l/4 resonance of an optical monopole antenna probed by single molecule fluorescence. Nano Letters, 2007, 7(1): 28–33
https://doi.org/10.1021/nl061726h pmid: 17212435
22 Lassiter J B, Aizpurua J, Hernandez L I, Brandl D W, Romero I, Lal S, Hafner J H, Nordlander P, Halas N J. Close encounters between two nanoshells. Nano Letters, 2008, 8(4): 1212–1218
https://doi.org/10.1021/nl080271o pmid: 18345644
23 Jain P K, El-Sayed M A. Noble metal nanoparticle pairs: effect of medium for enhanced nanosensing. Nano Letters, 2008, 8(12): 4347–4352
https://doi.org/10.1021/nl8021835 pmid: 19367968
24 Prodan E, Radloff C, Halas N J, Nordlander P. A hybridization model for the plasmon response of complex nanostructures. Science, 2003, 302(5644): 419–422
https://doi.org/10.1126/science.1089171 pmid: 14564001
25 Hermoso W, Alves T V, Ornellas F R, Camargo P H C. Comparative study on the far-field spectra and near-field amplitudes for silver and gold nanocubes irradiated at 514, 633 and 785 nm as a function of the edge length. European Physical Journal D, 2012, 66(5): 135
4 Greffet J J. Nanoantennas for light emission. Science, 2005, 308(5728): 1561–1563
https://doi.org/10.1126/science.1113355 pmid: 15947162
5 Li S Q, Zhou W, Buchholz D B, Ketterson J B, Ocola L E, Sakoda K, Chang R P H. Ultra-sharp plasmonic resonances from monopole optical nanoantenna phased arrays. Applied Physics Letters, 2014, 104(23): 231101
https://doi.org/10.1063/1.4881323
26 Shi H, Wang C, Zhou Y, Jin K, Yang G. Silver nanoparticles grown in organic solvent PGMEA by pulsed laser ablation and their nonlinear optical properties. Journal of Nanoscience and Nanotechnology, 2012, 12(10): 7896–7902 
https://doi.org/10.1166/jnn.2012.6606 pmid: 23421153
27 Noguez C. Surface plasmons on metal nanoparticles: the influence of shape and physical environment. Journal of Physical Chemistry C, 2007, 111(10): 3806–3819
https://doi.org/10.1021/jp066539m
28 González A L, Noguez C, Ortiz G P, Rodríguez-Gattorno G. Optical absorbance of colloidal suspensions of silver polyhedral nanoparticles. Journal of Physical Chemistry B, 2005, 109(37): 17512–17517
https://doi.org/10.1021/jp0533832 pmid: 16853239
29 Deng Y, Liu G, Zhang L, Ming H. Far- and near-field optical properties of Al nanorod by discrete dipole approximation. Journal of Modern Optics, 2015, 62(15): 1199–1203
https://doi.org/10.1080/09500340.2015.1047423
6 Klaer P, Razinskas G, Lehr M, Krewer K, Schertz F, Wu X, Hecht B, Schönhense G, Elmers H J. Robustness of plasmonic angular momentum confinement in cross resonant optical antennas. Applied Physics Letters, 2015, 106(26): 261101
https://doi.org/10.1063/1.4923242
7 Blanchard R, Aoust G, Genevet P, Yu N, Kats M A, Gaburro Z, Capasso F. Modeling nanoscale V-shaped antennas for the design of optical phased arrays. Physical Review B: Condensed Matter and Materials Physics, 2012, 85(15): 155457
https://doi.org/ 10.1103/PhysRevB.85.155457
8 Kinkhabwala A, Yu Z, Fan S, Avlasevich Y, Müllen K, Moerner W E. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nature Photonics, 2009, 3(11): 654–657
https://doi.org/10.1038/nphoton.2009.187
9 Atie E M, Xie Z, Eter A E, Salut R, Nedeljkovic D, Tannous T, Baida F I, Grosjean T. Remote optical sensing on the nanometer scale with a bowtie aperture nano-antenna on a fiber tip of scanning near-field optical microscopy. Applied Physics Letters, 2015, 106(15): 151104 
https://doi.org/10.1063/1.4918531
10 Zhu W, Rukhlenko I D, Xiao F, Premaratne M. Polarization conversion in U- shaped chiral meta-material with four-fold symmetry breaking. Journal of Applied Physics, 2014, 115(14): 143101
https://doi.org/10.1063/1.4870862
11 Zhang Z Y, Zhao Y P. Extinction spectra and electrical field enhancement of Ag nanorods with different topologic shapes. Journal of Applied Physics, 2007, 102(11): 113308
https://doi.org/10.1063/1.2818365
12 Seok T J, Jamshidi A, Kim M, Dhuey S, Lakhani A, Choo H, Schuck P J, Cabrini S, Schwartzberg A M, Bokor J, Yablonovitch E, Wu M C. Radiation engineering of optical antennas for maximum field enhancement. Nano Letters, 2011, 11(7): 2606–2610
https://doi.org/10.1021/nl2010862 pmid: 21648393
13 Rose A, Hoang T B, McGuire F, Mock J J, Ciracì C, Smith D R, Mikkelsen M H. Control of radiative processes using tunable plasmonic nanopatch antennas. Nano Letters, 2014, 14(8): 4797–4802
https://doi.org/10.1021/nl501976f pmid: 25020029
14 Knight M W, King N S, Liu L, Everitt H O, Nordlander P, Halas N J. Aluminum for plasmonics. ACS Nano, 2014, 8(1): 834–840
https://doi.org/10.1021/nn405495q pmid: 24274662
15 Sanz J M, Ortiz D, Alcaraz De La Osa R, Saiz J M, González F, Brown A S, Losurdo M, Everitt H O, Moreno F. UV plasmonic behavior of various metal nanoparticles in the near and far-field regimes. Journal of Physical Chemistry C, 2013, 117(38): 19606–19615
https://doi.org/10.1021/jp405773p
16 Ono A, Kikawada M, Akimoto R, Inami W, Kawata Y. Fluorescence enhancement with deep-ultraviolet surface plasmon excitation. Optics Express, 2013, 21(15): 17447–17453
https://doi.org/10.1364/OE.21.017447 pmid: 23938614
17 Ekinci Y, Solak H H, Löffler J F. Plasmon resonances of aluminum nanoparticles and nanorods. Journal of Applied Physics, 2008, 104(8): 083107
https://doi.org/10.1063/1.2999370
[1] Briliant Adhi PRABOWO, I Dewa Putu HERMIDA, Robeth Viktoria MANURUNG, Agnes PURWIDYANTRI, Kou-Chen LIU. Nano-film aluminum-gold for ultra-high dynamic-range surface plasmon resonance chemical sensor[J]. Front. Optoelectron., 2019, 12(3): 286-295.
[2] Md. Nazmul HOSSEN, Md. FERDOUS, Kawsar AHMED, Md. Abdul KHALEK, Sujan CHAKMA, Bikash Kumar PAUL. Single polarization photonic crystal fiber filter based on surface plasmon resonance[J]. Front. Optoelectron., 2019, 12(2): 157-164.
[3] Kaushik BRAHMACHARI, Mina RAY. Effect of prism material on design of surface plasmon resonance sensor by admittance loci method[J]. Front Optoelec, 2013, 6(2): 185-193.
[4] Changkui HU, Deming LIU. Transmission-type SPR sensor based on coupling of surface plasmons to radiation modes using a dielectric grating[J]. Front Optoelec Chin, 2009, 2(2): 182-186.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed