Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2017, Vol. 10 Issue (2) : 144-150    https://doi.org/10.1007/s12200-017-0670-3
RESEARCH ARTICLE
Nested microring resonator with a doubled free spectral range for sensing application
Xin ZHANG(), Jiawen JIAN, Han JIN, Peipeng XU
Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China
 Download: PDF(374 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The microring resonator has received increasing attention in the optical sensing application because of its micro-size, optical property, and high sensitivity. An additional waveguide is commonly used to change the output spectra in the early research on microring resonators. In this study, we proposed a nested microring resonator that doubles the free spectral range (FSR) compared with the conventional single microring. This structure improved the sensing property as the FSR in the filter output spectra could be considered as a measurement range in the microring sensor. Moreover, the parameters including the coupling coefficient of the three coupling sections, length of the U-bend waveguide, and effective index of a waveguide were tested and carefully selected to optimize the sensing properties. The relationship between these parameters and the output spectra was demonstrated. With linear sensitivity, the structure has a good potential in sensing application.

Keywords microring resonator      double free spectral range (FSR)      sensing application      large measurement range     
Corresponding Author(s): Xin ZHANG   
Just Accepted Date: 12 January 2017   Issue Date: 05 July 2017
 Cite this article:   
Xin ZHANG,Jiawen JIAN,Han JIN, et al. Nested microring resonator with a doubled free spectral range for sensing application[J]. Front. Optoelectron., 2017, 10(2): 144-150.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-017-0670-3
https://academic.hep.com.cn/foe/EN/Y2017/V10/I2/144
Fig.1  Schematic of (a) the nested microring and (b) the cross-section of its waveguide
Fig.2  Output spectra of Port Through and Port Out for the proposed structure (a) and (b) and the conventional structure (c) and (d)
Fig.3  Output spectra of the proposed structure with different positions for communication: port In and port Through (a) and (d) in different waveguides; (b) and (c) in same waveguide
Fig.4  Output spectra of the proposed structure (a) in different phase shifts (b)
Fig.5  Output spectra of the proposed structure in the different coupling coefficients. (a) shows the output spectra when the coupling coefficients of the waveguide-to-waveguide section are selected at 0.5, 0.2, and 0.05, respectively, and the coupling coefficient of the ring-to-waveguide sections is maintained at k = 0.2; (b) represents the output spectra of Port Through. The coupling coefficient of the waveguide-to-waveguide section is maintained at 0.2, and the coupling coefficients of the ring-to-waveguide are 0.5, 0.2, and 0.05
Fig.6  Redshift of the resonant notch in the output spectrum with increasing n
Fig.7  Sensitivity curve of the sensor
1 Mi K P, Kee J S, Quah J Y, Netto V, Song J, Fang Q, Fosse E M L, Lo G. Label-free aptamer sensor based on silicon microring resonators. Sensors and Actuators B, Chemical, 2013, 176(6): 552–559
2 Jäger M, Becherer T, Bruns J, Haag R, Petermann K. Antifouling coatings on SOI microring resonators for bio sensing applications. Sensors and Actuators B, Chemical, 2015, 223(4): 400–405
3 Zhao X, Tsai J M, Cai H, Ji X M, Zhou J, Bao M H, Huang Y P, Kwong D L, Liu A Q. A nano-opto-mechanical pressure sensor via ring resonator. Optics Express, 2012, 20(8): 8535–8542
https://doi.org/10.1364/OE.20.008535 pmid: 22513562
4 Mi G, Horvath C, Aktary M, Van V. Silicon microring refractometric sensor for atmospheric CO2 gas monitoring. Optics Express, 2016, 24(2): 1773–1780
https://doi.org/10.1364/OE.24.001773 pmid: 26832555
5 Zang K, Zhang D, Huo Y, Chen X, Lu C Y, Fei E T, Kamins T I, Feng X, Huang Y, Harris J S. Microring bio-chemical sensor with integrated low dark current Ge photodetector. Applied Physics Letters, 2015, 106(10): 101111
https://doi.org/10.1063/1.4915094
6 Mao M, Chen S, Dai D. Cascaded ring-resonators for multi-channel optical sensing with reduced temperature sensitivity. IEEE Photonics Technology Letters, 2016, 28(7): 814–817
https://doi.org/10.1109/LPT.2016.2514318
7 Zhang C, Chen S, Ling T, Guo L J. Review of imprinted polymer microrings as ultrasound detectors: design, fabrication, and characterization. IEEE Sensors Journal, 2015, 15(6): 3241–3248
https://doi.org/10.1109/JSEN.2015.2421519
8 Prasad P R, Selvaraja S K, Varma M M. High precision measurement of intensity peak shifts in tunable cascaded microring intensity sensors. Optics Letters, 2016, 41(14): 3153–3156
https://doi.org/10.1364/OL.41.003153 pmid: 27420483
9 Xu Q, Fattal D, Beausoleil R G. Silicon microring resonators with 1.5-microm radius. Optics Express, 2008, 16(6): 4309–4315
https://doi.org/10.1364/OE.16.004309 pmid: 18542527
10 Lu Y, Fu X, Chu D, Wen W, Yao J. Fano resonance and spectral compression in a ring resonator drop filter with feedback. Optics Communications, 2011, 284(1): 476–479
https://doi.org/10.1016/j.optcom.2010.08.025
11 Li Z, Li X, SunY, LiS, Zheng W. Doubled free spectral range of single microring resonator filter. Acta Optica Sinica, 2012, 32(7): 224–229
12 Xiang X Y, Wang K R, Yuan J H, Jin B Y, Sang X Z, YuC X. Highly sensitive digital optical sensor with large measurement range based on the dual-microring resonator with waveguide-coupled feedback. Chinese Physics B, 2014, 23(3): 034206 
https://doi.org/10.1088/1674-1056/23/3/034206
[1] Meng XIONG,Yunhong DING,Haiyan OU,Christophe PEUCHERET,Xinliang ZHANG. Comparison of wavelength conversion efficiency between silicon waveguide and microring resonator[J]. Front. Optoelectron., 2016, 9(3): 390-394.
[2] Liyang LU, Jiayang WU, Tao WANG, Yikai SU. Compact all-optical differential-equation solver based on silicon microring resonator[J]. Front Optoelec, 2012, 5(1): 99-106.
[3] Yingtao HU, Xi XIAO, Zhiyong LI, Yuntao LI, Yude YU, Jinzhong YU. Slow light in silicon microring resonators[J]. Front Optoelec Chin, 2011, 4(3): 282-287.
[4] Yikai SU, Gan ZHOU, Fei LI, Tao WANG. High-speed, compact silicon and hybrid plasmonic waveguides for signal processing[J]. Front Optoelec Chin, 2011, 4(3): 264-269.
[5] Yao CHEN, Junbo FENG, Zhiping ZHOU, Christopher J. SUMMERS, David S. CITRIN, Jun YU. Simple technique to fabricate microscale and nanoscale silicon waveguide devices[J]. Front Optoelec Chin, 2009, 2(3): 308-311.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed