Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2017, Vol. 10 Issue (2) : 124-131    https://doi.org/10.1007/s12200-017-0682-z
RESEARCH ARTICLE
Broadband and conformal metamaterial absorber
Xiangkun KONG1,2(), Junyi XU1, Jin-jun MO3, Shaobin LIU1
1. Key Laboratory of Radar Imaging and Microwave Photonics, Ministry of Education, College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
2. State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China
3. College of Electronic Science and Engineering, National University of Defense Technology, Changsha 410073, China
 Download: PDF(451 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this study, a new broadband and conformal metamaterial absorber using two flexible substrates was proposed. Simulation results showed that the proposed absorber exhibited an absorption band from 6.08 to 13.04 GHz and a high absorption of 90%, because it was planar. The absorber was broadband as its relative absorption bandwidth was 72.8%. Moreover, the proposed absorber was insensitive to the polarization of the TE and TM waves. The absorber was ultra-thin; its total thickness was only 0.07λ at the lowest operating frequency. Furthermore, different regions of absorption can be adjusted by lumping and loading two resistors onto the polyimide film, respectively. Moreover, compared with the conventional microwave absorber, the absorption bandwidth of the proposed absorber can be broadened and enhanced when it was bent and conformed to the surface of objects. Experimental and simulation results were in agreement. The proposed absorber is a promising absorbing element in scientific and technical applications because of its broadband absorption, polarization insensitivity, and flexible substrates.

Keywords absorber      metamaterials      flexible      broadband      conformal     
Corresponding Author(s): Xiangkun KONG   
Just Accepted Date: 28 March 2017   Online First Date: 17 April 2017    Issue Date: 05 July 2017
 Cite this article:   
Xiangkun KONG,Junyi XU,Jin-jun MO, et al. Broadband and conformal metamaterial absorber[J]. Front. Optoelectron., 2017, 10(2): 124-131.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-017-0682-z
https://academic.hep.com.cn/foe/EN/Y2017/V10/I2/124
Fig.1  (a) Top view of the conformal absorber; (b) side view of the conformal absorber; (c) resonator patterned on a PI film; (d) simulated and measured absorption with respect to the frequency; (e) calculated real and imaginary parts of the impedance
Fig.2  Simulated absorptions for different angles of incidence for (a) TE and (b) TM polarizations
Fig.3  Simulated absorptions for different values of (a) geometric parameter a1 and (b) resistor R1
Fig.4  Simulated current distributions on the surface at the three resonance frequencies: (a)–(c) top view and (d)–(f) central cross section
Fig.5  (a) Photograph of the fabricated measurement sample; (b) planar measurement environment
Fig.6  Measured absorptions at different incident angles (0°– 60°) of the incident wave
Fig.7  (a) Sample conformed to the surface of the cylinder; (b) conformal measurement at different central angles (α = 60°–180°)
Fig.8  Measured absorptions at different central angles (α = 60°–180°)
1 Pendry J B, Holden  A J, Stewart  W J, Youngs  I. Extremely low frequency plasmons in metallic mesostructures. Physical Review Letters, 1996, 76(25): 4773–4776
https://doi.org/10.1103/PhysRevLett.76.4773 pmid: 10061377
2 Pendry J B, Holden  A J, Robbins  D J, Stewart  W J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2075–2084
https://doi.org/10.1109/22.798002
3 Veselago V G. The electrodynamics of substances with simultaneously negative values of ε and μ. Soviet Physics-Uspekhi, 1968, 10(4): 509–514
https://doi.org/10.1070/PU1968v010n04ABEH003699
4 Schurig D, Mock  J J, Justice  B J, Cummer  S A, Pendry  J B, Starr  A F, Smith  D R. Metamaterial electromagnetic cloak at microwave frequencies. Science, 2006, 314(5801): 977–980
https://doi.org/10.1126/science.1133628 pmid: 17053110
5 Bian B, Liu  S, Wang S ,  Kong X, Guo  Y, Zhao X ,  Ma B, Chen  C. Cylindrical optimized nonmagnetic concentrator with minimized scattering. Optics Express, 2013, 21(S2): A231–A240
https://doi.org/10.1364/OE.21.00A231 pmid: 23482285
6 Pendry J B. Negative refraction makes a perfect lens. Physical Review Letters, 2000, 85(18): 3966–3969
https://doi.org/10.1103/PhysRevLett.85.3966 pmid: 11041972
7 Fang N, Lee  H, Sun C ,  Zhang X . Sub-diffraction-limited optical imaging with a silver superlens. Science, 2005, 308(5721): 534–537
https://doi.org/10.1126/science.1108759 pmid: 15845849
8 Liu Z, Lee  H, Xiong Y ,  Sun C, Zhang  X. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science, 2007, 315(5819): 1686
https://doi.org/10.1126/science.1137368 pmid: 17379801
9 Schurig D, Smith  D R. Negative index lens aberrations. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2004, 70(6): 065601
https://doi.org/10.1103/PhysRevE.70.065601
10 Landy N I, Sajuyigbe  S, Mock J J ,  Smith D R ,  Padilla W J . Perfect metamaterial absorber. Physical Review Letters, 2008, 100(20): 207402
https://doi.org/10.1103/PhysRevLett.100.207402
11 Shen X, Yang  Y, Zang Y ,  Gu J, Han  J, Zhang W ,  Jun Cui T . Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation. Applied Physics Letters, 2012, 101(15): 154102
https://doi.org/10.1063/1.4757879
12 Xu H, Wang  G, Qi M ,  Liang J ,  Gong J, Xu  Z. Triple-band polarization-insensitive wide-angle ultra-miniature metamaterial transmission line absorber. Physical Review B: Condensed Matter and Materials Physics, 2012, 86(20): 205104 doi:10.1103/PhysRevB.86.205104
13 Mao Z, Liu  S, Bian B ,  Wang B, Ma  B, Chen L ,  Xu J. Multi-band polarization-insensitive metamaterial absorber based on Chinese ancient coin-shaped structures. Journal of Applied Physics, 2014, 115(20): 204505
https://doi.org/10.1063/1.4878697
14 Bian B, Liu  S, Wang S ,  Kong X, Zhang  H, Ma B ,  Yang H. Novel triple-band polarization-insensitive wide-angle ultra-thin microwave metamaterial absorber. Journal of Applied Physics, 2013, 114(19): 194511
https://doi.org/10.1063/1.4832785
15 Ye Q, Liu  Y, Lin H ,  Li M, Yang  H. Multi-band metamaterial absorber made of multi-gap SRRs structure. Applied Physics A, Materials Science & Processing, 2012, 107(1): 155–160
https://doi.org/10.1007/s00339-012-6796-7
16 Liu Y, Gu  S, Luo C ,  Zhao X. Ultra-thin broadband metamaterial absorber. Applied Physics A, Materials Science & Processing , 2012, 108(1): 19–24
https://doi.org/10.1007/s00339-012-6936-0
17 Yang G, Liu  X, Lv Y ,  Fu J, Wu  Q, Gu X . Broadband polarization-insensitive absorber based on gradient structure metamaterial.  Journal of Applied Physics, 2014, 115(17): 17E523 doi:10.1063/1.4868090
18 Wang B, Liu  S, Bian B ,  Mao Z, Liu  X, Ma B ,  Chen L. A novel ultrathin and broadband microwave metamaterial absorber. Journal of Applied Physics, 2014, 116(9): 094504
https://doi.org/10.1063/1.4894824
19 Pang Y, Cheng  H, Zhou Y ,  Li Z, Wang  J. Ultrathin and broadband high impedance surface absorbers based on metamaterial substrates. Optics Express, 2012, 20(11): 12515–12520
https://doi.org/10.1364/OE.20.012515 pmid: 22714239
20 Sun L, Cheng  H, Zhou Y ,  Wang J. Broadband metamaterial absorber based on coupling resistive frequency selective surface. Optics Express, 2012, 20(4): 4675–4680
https://doi.org/10.1364/OE.20.004675 pmid: 22418224
21 Wu C, Neuner Iii  B, John J ,  Milder A ,  Zollars B ,  Savoy S . Large-area, wide-angle, spectrally selective plasmonic absorber. Physical Review B: Condensed Matter and Materials Physics, 2011, 84(7): 173−177
22 Zhu B, Wang  Z, Huang C ,  Feng Y, Zhao  J, Jiang T . Polarization insensitive metamaterial absorber with wide incident angle. Progress in Electromagnetics Research, 2010, 101: 231–239
https://doi.org/10.2528/PIER10011110
23 Li L, Yang  Y, Liang C . A wide-angle polarization-insensitive ultra-thin metamaterial absorber with three resonant modes. Journal of Applied Physics, 2011, 110(6): 063702
https://doi.org/10.1063/1.3638118
24 Bhattacharyya S, Ghosh  S, Srivastava K V . Triple band polarization-independent metamaterial absorber with bandwidth enhancement at X-band. Journal of Applied Physics, 2013, 114(9): 094514
https://doi.org/10.1063/1.4820569
25 Singh P K, Korolev  K A, Afsar  M N, Sonkusale  S. Single and dual band 77/95/110 GHz metamaterial absorbers on flexible polyimide substrate. Applied Physics Letters, 2011, 99(26): 264101
https://doi.org/10.1063/1.3672100
26 Yoo Y J, Zheng  H Y, Kim  Y J, Rhee  J Y, Kang  J H, Kim  K W, Cheong  H, Kim Y H ,  Lee Y P . Flexible and elastic metamaterial absorber for low frequency, based on small-size unit cell. Applied Physics Letters, 2014, 105(4): 041902
https://doi.org/10.1063/1.4885095
27 Tao H, Strikwerda  A C, Fan  K, Bingham C M ,  Padilla W J ,  Zhang X ,  Averitt R D . Terahertz metamaterials on free-standing highly-flexible polyimide substrates. Journal of Physics D: Applied Physics, 2008, 41(23): 232004
https://doi.org/10.1088/0022-3727/41/23/232004
28 Kim H K, Ling  K, Kim K ,  Lim S. Flexible inkjet-printed metamaterial absorber for coating a cylindrical object. Optics Express, 2015, 23(5): 5898–5906
https://doi.org/10.1364/OE.23.005898 pmid: 25836816
29 Clavijo S, Diaz  R E, McKinzie  W E. Design methodology for sievenpiper high-impedance surfaces: an artificial magnetic conductor for positive gain electrically small antennas. IEEE Transactions on Antennas and Propagation, 2003, 51(10): 2678–2690
https://doi.org/10.1109/TAP.2003.817575
30 Shang Y, Shen  Z, Xiao S . On the design of single-layer circuit analog absorber using double-square-loop array. IEEE Transactions on Antennas and Propagation, 2013, 61(12): 6022–6029
https://doi.org/10.1109/TAP.2013.2280836
31 Zabri S N, Cahill  R, Schuchinsky A . Compact FSS absorber design using resistively loaded quadruple hexagonal loops for bandwidth enhancement. Electronics Letters, 2015, 51(2): 162–164
https://doi.org/10.1049/el.2014.3866
32 Ponchak G E, Downey  A N. Characterization of thin film microstrip lines on polyimide.  IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part B, 1998, 21(2): 171–176
33 Schallamach A, Thirion  P. Dielectric loss in swollen rubber. Transactions of the Faraday Society, 1949, 45: 605–611
https://doi.org/10.1039/tf9494500605
34 Jang T, Youn  H, Shin Y J ,  Guo L J . Transparent and flexible polarization-independent microwave broadband absorber. ACS Photonics, 2014, 1(3): 279–284
https://doi.org/10.1021/ph400172u
[1] Md. Mostafa FARUK, Nazifa Tabassum KHAN, Shovasis Kumar BISWAS. Highly nonlinear bored core hexagonal photonic crystal fiber (BC-HPCF) with ultra-high negative dispersion for fiber optic transmission system[J]. Front. Optoelectron., 2020, 13(4): 433-440.
[2] Junze LI, Haizhen WANG, Dehui LI. Self-trapped excitons in two-dimensional perovskites[J]. Front. Optoelectron., 2020, 13(3): 225-234.
[3] Yanhua LUO, Binbin YAN, Jianzhong ZHANG, Jianxiang WEN, Jun HE, Gang-Ding PENG. Development of Bi/Er co-doped optical fibers for ultra-broadband photonic applications[J]. Front. Optoelectron., 2018, 11(1): 37-52.
[4] Benxin WANG,Xiang ZHAI,Guizhen WANG,Weiqing HUANG,Lingling WANG. Broadband coplane metamaterial filter based on two nested split-ring-resonators[J]. Front. Optoelectron., 2016, 9(4): 565-570.
[5] Xiangang LUO. Subwavelength electromagnetics[J]. Front. Optoelectron., 2016, 9(2): 138-150.
[6] Hou-Tong CHEN. Semiconductor activated terahertz metamaterials[J]. Front. Optoelectron., 2015, 8(1): 27-43.
[7] Jian WANG. A review of recent progress in plasmon-assisted nanophotonic devices[J]. Front. Optoelectron., 2014, 7(3): 320-337.
[8] Xiaofei LU,Xi-Cheng ZHANG. Investigation of ultra-broadband terahertz time-domain spectroscopy with terahertz wave gas photonics[J]. Front. Optoelectron., 2014, 7(2): 121-155.
[9] I-Chen HO,Xi-Cheng ZHANG. Application of broadband terahertz spectroscopy in semiconductor nonlinear dynamics[J]. Front. Optoelectron., 2014, 7(2): 220-242.
[10] Zhuang ZHAO, Sophie BOUCHOULE, Jean-Christophe HARMAND, Gilles PATRIARCHE, Guy AUBIN, Jean-Louis OUDAR. Recent advances in development of vertical-cavity based short pulse source at 1.55 μm[J]. Front Optoelec, 2014, 7(1): 1-19.
[11] Yinghui GUO, Lianshan YAN, Wei PAN, Bin LUO, Xiantao ZHANG, Xiangang LUO. Misalignments among stacked layers of metamaterial terahertz absorbers[J]. Front Optoelec, 2014, 7(1): 53-58.
[12] Shui ZHAO, Ping LU, Li CHEN, Deming LIU, Jiangshan ZHANG. Transient Bragg fiber gratings formed by unpumped thulium doped fiber[J]. Front Optoelec, 2013, 6(2): 180-184.
[13] Zhenyu YANG, Peng ZHANG, Peiyuan XIE, Lin WU, Zeqin LU, Ming ZHAO. Polarization properties in helical metamaterials[J]. Front Optoelec, 2012, 5(3): 248-255.
[14] Cunxi CHENG, Jihuai WU, Yaoming XIAO, Yuan CHEN, Haijun YU, Ziying TANG, Jianming LIN, Miaoliang HUANG. Preparation of titanium dioxide-double-walled carbon nanotubes and its application in flexible dye-sensitized solar cells[J]. Front Optoelec, 2012, 5(2): 224-230.
[15] Wei CHEN, Shihe YANG. Dye-sensitized solar cells based on ZnO nanotetrapods[J]. Front Optoelec Chin, 2011, 4(1): 24-44.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed