Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2017, Vol. 10 Issue (4) : 378-387    https://doi.org/10.1007/s12200-017-0706-8
RESEARCH ARTICLE
Extracting the time delay signature of coupled optical chaotic systems by mutual statistical analysis
Xinhua ZHU, Mengfan CHENG(), Lei DENG, Xingxing JIANG, Deming LIU
Next Generation Internet Access National Engineering Laboratory (NGIA), School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(526 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The time delay (TD) signature is a critical parameter in optical chaos-based applications. The feasibility of extracting the TD has been a crucial issue that significantly influences the performance of these applications. In this paper, statistical analyses have been conducted to extract the TD signatures from different types of coupled optical chaos systems. More specifically, a mutually coupled semiconductor laser chaotic system, an intensity-coupled electro-optic chaotic system, and a phase-coupled electro-optic chaotic system are studied in detail. These systems are proposed to resist the attack strategies against the TD signature. They are proved to be effective under statistical analyzes, such as the self-correlation function (SF) and mutual information (MI). However, only a single output has been considered for the attack process in the existing research. We demonstrated that the TD signature can still be extracted by analyzing the mutual statistical relationship between the different output signals which are generated simultaneously by the coupled system. Furthermore, we find that the extraction strategy is effective for a wide parameter range in these schemes.

Keywords optical chaotic system      chaos      electro-optic nonlinear system      time delay (TD) concealment     
Corresponding Author(s): Mengfan CHENG   
Just Accepted Date: 10 August 2017   Online First Date: 14 September 2017    Issue Date: 21 December 2017
 Cite this article:   
Xinhua ZHU,Mengfan CHENG,Lei DENG, et al. Extracting the time delay signature of coupled optical chaotic systems by mutual statistical analysis[J]. Front. Optoelectron., 2017, 10(4): 378-387.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-017-0706-8
https://academic.hep.com.cn/foe/EN/Y2017/V10/I4/378
Fig.1  Configuration of the capture system
Fig.2  (a) SF curve of E1; (b) MI curve of E1; (c) CCF between E1 and E2; (d) DMI between E1 and E2. Parameters are chosen at h = 7.5 ns-1 and D f = 0 GHz
Fig.3  Maps of TD signature in parameter space of h, Df under CCF and DMI analyses. (a) CCF; (b) DMI. The insets show the CCF and DMI curves at h = 0.04, Df = 12 GHz and h = 0.08, D f = 0 GHz, respectively
Fig.4  System configuration built on the intensity-coupled electro-optic chaotic system
Fig.5  SF(x1), MI(x1), CCF (x1, x2) and DMI(x1, x2) curve when b = 4. (a) SF curve; (b) MI curve; (c) CCF curve; (d) DMI curve
Fig.6  Peak values of the CCF and DMI curves while b ranges from 2 to 9. The insets show the CCF and DMI curves while b = 6, 7.5, 9
Fig.7  System configuration built on the phase-coupled electro-optic chaotic system
Fig.8  Fig. 8  SF, MI curve of x1(t) and CCF, DMI curve of x1(t), z1(t), while the bit rate of PRBS is 3 Gb/s and the amplitude is p/2. (a) SF curve; (b) MI curve; (c) CCF curve; (d) DMI curve
Fig.9  Absolute value of the peaks in CCF and DMI at T1' and T2' while the bit rate of PRBS increases. (a) CCF; (b) DMI. The insets show the CCF and DMI curves while the bit rate of PRBS is 3 and 10 Gb/s, respectively
1 Nguimdo R M, Colet P. Electro-optic phase chaos systems with an internal variable and a digital key. Optics Express, 2012, 20(23): 25333–25344
https://doi.org/10.1364/OE.20.025333 pmid: 23187350
2 Hong Y, Paul J, Spencer P S, Shore K A. Ghz bandwidth message transmission using chaotic vertical-cavity surface-emitting lasers. Journal of Lightwave Technology, 2009, 27(22): 5099–5105
https://doi.org/10.1109/JLT.2009.2030344
3 Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, García-Ojalvo J, Mirasso C R, Pesquera L, Shore K A. Chaos-based communications at high bit rates using commercial fibre-optic links. Nature, 2005, 438(7066): 343–346
https://doi.org/10.1038/nature04275 pmid: 16292256
4 Cheng C H, Chen Y C, Lin F Y. Chaos time delay signature suppression and bandwidth enhancement by electrical heterodyning. Optics Express, 2015, 23(3): 2308–2319
https://doi.org/10.1364/OE.23.002308 pmid: 25836098
5 Torre M S, Masoller C, Shore K A. Numerical study of optical injection dynamics of vertical-cavity surface-emitting lasers. IEEE Journal of Quantum Electronics, 2004, 40(1): 25–30
https://doi.org/10.1109/JQE.2003.821484
6 Liao Y H, Liu J M, Lin F Y. Dynamical characteristics of a dual-beam optically injected semiconductor laser. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(4): 1500606
https://doi.org/10.1109/JSTQE.2012.2236822
7 Wieczorek S, Chow W W. Bifurcations and chaos in a semiconductor laser with coherent or noisy optical injection. Optics Communications, 2009, 282(12): 2367–2379
https://doi.org/10.1016/j.optcom.2009.02.060
8 Tang S, Liu J M. Chaotic pulsing and quasi-periodic route to chaos in a semiconductor laser with delayed opto-electronic feedback. IEEE Journal of Quantum Electronics, 2001, 37(3): 329–336
https://doi.org/10.1109/3.910441
9 Shibasaki N, Uchida A, Yoshimori S, Davis P. Characteristics of chaos synchronization in semiconductor lasers subject to polarization-rotated optical feedback. IEEE Journal of Quantum Electronics, 2006, 42(3): 342–350
https://doi.org/10.1109/JQE.2006.870226
10 Deng T, Xia G Q, Cao L P, Chen J G, Lin X D, Wu Z M. Bidirectional chaos synchronization and communication in semiconductor lasers with optoelectronic feedback. Optics Communications, 2009, 282(11): 2243–2249
https://doi.org/10.1016/j.optcom.2009.02.040
11 Aoyama H, Tomida S, Shogenji R, Ohtsubo J. Chaos dynamics in vertical-cavity surface-emitting semiconductor lasers with polarization-selected optical feedback. Optics Communications, 2011, 284(5): 1405–1411
https://doi.org/10.1016/j.optcom.2010.10.099
12 Nguimdo R M, Verschaffelt G, Danckaert J, Van der Sande G. Fast photonic information processing using semiconductor lasers with delayed optical feedback: role of phase dynamics. Optics Express, 2014, 22(7): 8672–8686
https://doi.org/10.1364/OE.22.008672 pmid: 24718237
13 Annovazzi-Lodi V, Aromataris G, Benedetti M. Multi-user private transmission with chaotic lasers. IEEE Journal of Quantum Electronics, 2012, 48(8): 1095–1101
https://doi.org/10.1109/JQE.2012.2202373
14 Jiang N, Pan W, Yan L, Luo B, Zhang W, Xiang S, YangL, Zheng D. Chaos synchronization and communication in mutually coupled semiconductor lasers driven by a third laser. Journal of Lightwave Technology, 2010, 28(13): 1978–1986
https://doi.org/10.1109/JLT.2010.2050858
15 Mirasso C R, Mulet J, Masoller C. Chaos shift-keying encryption in chaotic external-cavity semiconductor lasers using a single-receiver scheme. IEEE Photonics Technology Letters, 2002, 14(4): 456–458
https://doi.org/10.1109/68.992576
16 Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K, Davis P. Fast physical random bit generation with chaotic semiconductor lasers. Nature Photonics, 2008, 2(12): 728–732
https://doi.org/10.1038/nphoton.2008.227
17 Butler T, Durkan C, Goulding D, Slepneva S, Kelleher B, Hegarty S P, Huyet G. Optical ultrafast random number generation at 1 Tb/s using a turbulent semiconductor ring cavity laser. Optics Letters, 2016, 41(2): 388–391
https://doi.org/10.1364/OL.41.000388 pmid: 26766721
18 Lin F Y, Liu J M. Chaotic radar using nonlinear laser dynamics. IEEE Journal of Quantum Electronics, 2004, 40(6): 815–820
https://doi.org/10.1109/JQE.2004.828237
19 Wu W T, Liao Y H, Lin F Y. Noise suppressions in synchronized chaos lidars. Optics Express, 2010, 18(25): 26155–26162
https://doi.org/10.1364/OE.18.026155 pmid: 21164964
20 Soriano M C, Colet P, Mirasso C R. Security implications of open- and closed-loop receivers in all-optical chaos-based communications. IEEE Photonics Technology Letters, 2009, 21(7): 426–428
https://doi.org/10.1109/LPT.2009.2013186
21 Ursini L, Santagiustina M, Annovazzi-Lodi V. Enhancing chaotic communication performances by manchester coding. IEEE Photonics Technology Letters, 2008, 20(6): 401–403
https://doi.org/10.1109/LPT.2008.916918
22 Reidler I, Aviad Y, Rosenbluh M, Kanter I. Ultrahigh-speed random number generation based on a chaotic semiconductor laser. Physical Review Letters, 2009, 103(2): 024102–024105
https://doi.org/10.1103/PhysRevLett.103.024102 pmid: 19659208
23 Udaltsov V S, Goedgebuer J P, Larger L, Cuenot J B, Levy P, Rhodes W T. Cracking chaos-based encryption systems ruled by nonlinear time delay differential Equations. Physics Letters, 2003, 308(1): 54–60 
https://doi.org/10.1016/S0375-9601(02)01776-0
24 Udaltsov, V S, Larger, L, Goedgebuer, J P, Locquet, A, Citrin, D S. Time delay identification in chaotic cryptosystems ruled by delay-differential equations. Journal of Optical Technology, 2005, 72(5): 373–377
25 Prokhorov M D, Ponomarenko V I, Karavaev A S, Bezruchko B P. Reconstruction of time-delayed feedback systems from time series. Physica D, Nonlinear Phenomena, 2005, 203(3–4): 209–223
https://doi.org/10.1016/j.physd.2005.03.013
26 Ortín, S, Gutiérrez, J M, Pesquera, L, Vasquez, H. Nonlinear dynamics extraction for time-delay systems using modular neural networks synchronization and prediction. Physica A Statistical Mechanics & Its Applications, 2005, 351(1): 133–141
27 Li S S, LiuQ, Chan S C. Distributed feedbacks for time-delay signature suppression of chaos generated from a semiconductor laser. IEEE Photonics Journal, 2012, 4(5): 1930–1935
https://doi.org/10.1109/JPHOT.2012.2220759
28 Xiao P, Wu Z M, Wu J G, Jiang L, Deng T, Tang X, Fan L, Xia G Q. Time-delay signature concealment of chaotic output in a vertical-cavity surface-emitting laser with double variable-polarization optical feedback. Optics Communications, 2013, 286: 339–343
https://doi.org/10.1016/j.optcom.2012.08.083
29 Lin H, Hong Y, Shore K A. Experimental study of time-delay signatures in vertical-cavity surface-emitting lasers subject to double-cavity polarization-rotated optical feedback. Journal of Lightwave Technology, 2014, 32(9): 1829–1836
https://doi.org/10.1109/JLT.2014.2315519
30 Wu J G, Wu Z M, Tang X, Lin X D, Deng T, Xia G Q, Feng G Y. Simultaneous generation of two sets of time delay signature eliminated chaotic signals by using mutually coupled semiconductor lasers. IEEE Photonics Technology Letters, 2011, 23(12): 759–761
https://doi.org/10.1109/LPT.2011.2131127
31 Li N, Pan W, Xiang S, Yan L, Luo B, Zou X. Loss of time delay signature in broadband cascade-coupled semiconductor lasers. IEEE Photonics Technology Letters, 2012, 24(23): 2187–2190
https://doi.org/10.1109/LPT.2012.2225101
32 Liu H, Li N, Zhao Q. Photonic generation of polarization-resolved wideband chaos with time-delay concealment in three-cascaded vertical-cavity surface-emitting lasers. Applied Optics, 2015, 54(14): 4380–4387
https://doi.org/10.1364/AO.54.004380 pmid: 25967492
33 Wu J G, Xia G Q, Tang X, Lin X D, Deng T, Fan L, Wu Z M. Time delay signature concealment of optical feedback induced chaos in an external cavity semiconductor laser. Optics Express, 2010, 18(7): 6661–6666
https://doi.org/10.1364/OE.18.006661 pmid: 20389689
34 Wang A, Yang Y, Wang B, Zhang B, Li L, Wang Y. Generation of wideband chaos with suppressed time-delay signature by delayed self-interference. Optics Express, 2013, 21(7): 8701–8710
https://doi.org/10.1364/OE.21.008701 pmid: 23571959
35 Wang A, Wang Y, Yang Y, Zhang M, Xu H, Wang B. Generation of flat-spectrum wideband chaos by fiber ring resonator. Applied Physics Letters, 2013, 102(3): 031112 doi:10.1063/1.4789366
36 Wang A, Wang B, Li L, Wang Y, Shore K A. Optical heterodyne generation of high-dimensional and broadband white chaos. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21: 1–10
37 Wu J G, Wu Z M, Xia G Q, Feng G Y. Evolution of time delay signature of chaos generated in a mutually delay-coupled semiconductor lasers system. Optics Express, 2012, 20(2): 1741–1753
https://doi.org/10.1364/OE.20.001741 pmid: 22274517
38 Cheng M, Gao X, Deng L, Liu L, Deng Y, Fu S, Zhang M, Liu D. Time-delay concealment in a three-dimensional electro-optic chaos system. IEEE Photonics Technology Letters, 2015, 27(9): 1030–1033
https://doi.org/10.1109/LPT.2015.2405564
39 Nguimdo R M, Colet P, Larger L, Pesquera L. Digital key for chaos communication performing time delay concealment. Physical Review Letters, 2011, 107(3): 034103
https://doi.org/10.1103/PhysRevLett.107.034103 pmid: 21838363
40 Gao X, Cheng M, Deng L, Liu L, Hu H, Liu D. A novel chaotic system with suppressed time-delay signature based on multiple electro-optic nonlinear loops. Nonlinear Dynamics, 2015, 82(1–2): 611–617
https://doi.org/10.1007/s11071-015-2181-3
41 D’Huys O, Fischer I, Danckaert J, Vicente R. Spectral and correlation properties of rings of delay-coupled elements: comparing linear and nonlinear systems. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2012, 85(5): 056209
https://doi.org/10.1103/PhysRevE.85.056209 pmid: 23004845
[1] Junxiang KE,Lilin YI,Tongtong HOU,Weisheng HU. Key technologies in chaotic optical communications[J]. Front. Optoelectron., 2016, 9(3): 508-517.
[2] Bushra NAWAZ, Rameez ASIF. Impact of polarization mode dispersion and nonlinearities on 2-channel DWDM chaotic communication systems[J]. Front Optoelec, 2013, 6(3): 312-317.
[3] Lingbo ZENG, Tao DENG, Zhengmao WU, Jiagui WU, Guangqiong XIA. Impacts of mismatched intrinsic parameter on leader-laggard synchronization between two mutually coupled VCSELs[J]. Front Optoelec Chin, 2011, 4(3): 298-307.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed