Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2017, Vol. 10 Issue (2) : 180-188    https://doi.org/10.1007/s12200-017-0711-y
RESEARCH ARTICLE
Theoretical demonstration of all-optical switchable and tunable UWB doublet pulse train generator utilizing SOA wavelength conversion and tunable time delay
Zhefeng HU(), Jianhui XU, Min HOU
School of Communication and Information Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
 Download: PDF(625 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

An all-optical ultrawide band (UWB) doublet pulse train signal generator is proposed and theoretically simulated by utilizing an inverse wavelength conversion base on the cross-gain modulation (XGM) effect in a semiconductor optical amplifier (SOA) and controllable time delay in two optical delay lines (ODLs). The proposed scheme is not only optically switchable in the polarity of pulse by switching the polarity of input pulse but also tunable in signal pulse width and radiofrequency (RF) spectrum by tuning the ODLs.

Keywords microwave photonics      ultrawide band (UWB)      tunable      switchable      semiconductor optical amplifier (SOA)      tunable time delay     
Corresponding Author(s): Zhefeng HU   
Just Accepted Date: 26 April 2017   Online First Date: 22 June 2017    Issue Date: 05 July 2017
 Cite this article:   
Zhefeng HU,Jianhui XU,Min HOU. Theoretical demonstration of all-optical switchable and tunable UWB doublet pulse train generator utilizing SOA wavelength conversion and tunable time delay[J]. Front. Optoelectron., 2017, 10(2): 180-188.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-017-0711-y
https://academic.hep.com.cn/foe/EN/Y2017/V10/I2/180
Fig.1  Working principle of the proposed switchable and tunable UWB pulse train generation scheme. (a) UWB pulse train in a negative doublet shape; (b) UWB pulse train in a positive doublet shape
symboldescriptionvalue
lactive region length10−3 m
wactive region width1.5 × 10−6 m
dactive region thickness2 × 10−7 m
Acoefficient of unimolecular recombination1.5 × 108 s−1
Bcoefficient of bimolecular recombination1 × 10−16 m3/s
Ccoefficient of Auger recombination1.2 × 10−40 m6/s
a1gain coefficient 15 × 10−20 m2
a2gain coefficient 27.4 × 1018 m−3
a3gain coefficient 33.155 × 1025 m−4
a4gain coefficient 43 × 10−32 m4
N0transparency carrier density1 × 1024 m−3
l0transparency wavelength1.56 × 10−6 m
αlinewidth enhancement factor4
aintinternal loss5 × 103 m−1
Γconfinement factor0.3
Tab.1  Parameters of SOA used in simulation
Fig.2  Temporal trace of lights at different wavelengths when the input signal is a Gaussian pulse train. (a) Input signal; (b) output signal; (c) output probe at lp1; (d) output probe at lp2
Fig.3  Temporal trace of lights at different wavelengths when the input signal is a polarity-reversed Gaussian pulse train. (a) Input signal; (b) output signal; (c) output probe at lp1; (d) output probe at lp2
Fig.4  Waveforms of the obtained UWB signal in doublet shape with time delay introduced by ODL1 tuned at different values. (a)–(c) 40, 80, and 120 ps (UWB signals in negative doublet shape); (d)–(f) 40, 80, and 120 ps (UWB signals in positive doublet shape)
Fig.5  Pulse widths depending on time delay of ODL1. (a) UWB signals in negative doublet shape; (b) UWB signals in positive doublet shape
Fig.6  RF spectra of the generated signals and their envelopes in doublet shape with time delay introduced by ODL1 tuned at different values. (a)–(c) 40, 80, and 120 ps (UWB signals in negative doublet shape); (d)–(f) 40, 80, 120 ps (UWB signals in positive doublet shape) Fc: central frequency; BW10 dB: bandwidth at 10 dB
Fig.7  Central frequency, 10 dB bandwidth, and fractional bandwidth depending on the time delay of ODL1. (a) and (b) UWB signal in negative doublet shape; (c) and (d) UWB signal in positive doublet shape. (a) and (c) central frequency and 10 dB bandwidth; (b) and (d) fractional bandwidth
1 Porcino D, Hirt W. Ultra-wideband radio technology: potential and challenges ahead. IEEE Communications Magazine, 2003, 41(7): 66–74
https://doi.org/10.1109/MCOM.2003.1215641
2 Aiello G R, Rogerson G D. Ultra-wideband wireless systems. IEEE Microwave Magazine, 2003, 4(2): 36–47
https://doi.org/10.1109/MMW.2003.1201597
3 Zeng F, Yao J. Ultrawideband impulse radio signal generation using a high-speed electrooptic phase modulator and a fiber-Bragg-grating-based frequency discriminator. IEEE Photonics Technology Letters, 2006, 18(19): 2062–2064
https://doi.org/10.1109/LPT.2006.883310
4 Wang Q, Yao J. Switchable optical UWB monocycle and doublet generation using a reconfigurable photonic microwave delay-line filter. Optics Express, 2007, 15(22): 14667–14672
https://doi.org/10.1364/OE.15.014667 pmid: 19550747
5 Wang Q, Yao J. An electrically switchable optical ultrawideband pulse generator. Journal of Lightwave Technology, 2007, 25(11): 3626–3633
https://doi.org/10.1109/JLT.2007.907749
6 Shao J, Sun J. Filter-free ultra-wideband doublet pulses generation based on wavelength conversion and fiber dispersion effect. Optics Communications, 2012, 285(12): 2790–2793
https://doi.org/10.1016/j.optcom.2012.02.050
7 Shao J, Liu S. Photonic generation of filter-free ultrawideband monocycle and doublet signal using single semiconductor optical amplifier in counter-propagation scheme. Optical Engineering, 2016, 55(2): 026117
8 Hu Z, Sun J, Shao J, Zhang X. Filter-free optically switchable and tunable ultrawideband monocycle generation based on wavelength conversion and fiber dispersion. IEEE Photonics Technology Letters, 2010, 22(1): 42–44
https://doi.org/10.1109/LPT.2009.2035710
9 Hu Z, Sun J, Shao J. Simulation of optically switchable and tunable ultrawideband monocycle generation using semiconductor optical amplifier and optical delay line. In: Photonics and Optoelectronics Meetings (POEM) 2009. Proceedings of the Society for Photo-Instrumentation Engineers, 2009, 7516: 75160Q
10 Hu Z, Xu J, Hou M. Proposal for all-optical switchable and tunable ultrawideband monocycle generation utilizing SOA wavelength conversion and time delay. Photonic Sensors, 2017, 7(1): 66–71
https://doi.org/10.1007/s13320-016-0389-6
11 Hsieh J, Gong P, Lee S, Wu J. Improved dynamic characteristics on four-wave mixing wavelength conversion in light-holding SOAs. IEEE Journal of Selected Topics in Quantum Electronics, 2004, 10(5): 1187–1196
https://doi.org/10.1109/JSTQE.2004.835300
12 Yao J, Zeng F, Wang Q. Photonic generation of ultrawideband signals. Journal of Lightwave Technology, 2007, 25(11): 3219–3235
https://doi.org/10.1109/JLT.2007.906820
[1] Saket KAUSHAL, Rui Cheng, Minglei Ma, Ajay Mistry, Maurizio Burla, Lukas Chrostowski, José Azaña. Optical signal processing based on silicon photonics waveguide Bragg gratings: review[J]. Front. Optoelectron., 2018, 11(2): 163-188.
[2] Mingying TANG,Shaoshuai SUI,Yuede YANG,Jinlong XIAO,Yun DU,Yongzhen HUANG. Investigation of mode characteristics in rectangular microresonators for wide and continuous wavelength tuning[J]. Front. Optoelectron., 2016, 9(3): 412-419.
[3] Michael J. CONNELLY,Lukasz KRZCZANOWICZ,Pascal MOREL,Ammar SHARAIHA,Francois LELARGE,Romain BRENOT,Siddharth JOSHI,Sophie BARBET. 40 Gb/s NRZ-DQPSK data wavelength conversion with amplitude regeneration using four-wave mixing in a quantum dash semiconductor optical amplifier[J]. Front. Optoelectron., 2016, 9(3): 341-345.
[4] Yu XIANG,Shilong PAN. GaAs-based polarization modulators for microwave photonic applications[J]. Front. Optoelectron., 2016, 9(3): 497-507.
[5] Tong CAO,Xinliang ZHANG. Performance improvement by enhancing the well-barrier hole burning in a quantum well semiconductor optical amplifier[J]. Front. Optoelectron., 2016, 9(3): 353-361.
[6] Yingqin PENG,Yuli CHEN,Qi SUI,Dawei WANG,Dongyu GENG,Freddy FU,Zhaohui LI. In-band OSNR monitoring based on low-bandwidth coherent receiver and tunable laser[J]. Front. Optoelectron., 2016, 9(3): 526-530.
[7] Xuelin YANG,Weisheng HU. Principle and applications of semiconductor optical amplifiers-based turbo-switches[J]. Front. Optoelectron., 2016, 9(3): 346-352.
[8] Rui YANG,Linjie ZHOU,Minjuan WANG,Haike ZHU,Jianping CHEN. Application of SOI microring coupling modulation in microwave photonic phase shifters[J]. Front. Optoelectron., 2016, 9(3): 483-488.
[9] Xiaoping ZHENG,Shangyuan LI,Hanyi ZHANG,Bingkun ZHOU. Researches in microwave photonics based packages for millimeter wave system with wide bandwidth and large dynamic range[J]. Front. Optoelectron., 2016, 9(2): 186-193.
[10] Yangang BI,Jinhai JI,Yang CHEN,Yushan LIU,Xulin ZHANG,Yunfei LI,Ming XU,Yuefeng LIU,Xiaochi HAN,Qiang GAO,Hongbo SUN. Dual-periodic-microstructure-induced color tunable white organic light-emitting devices[J]. Front. Optoelectron., 2016, 9(2): 283-289.
[11] Xiaoxiao XUE,Andrew M. WEINER. Microwave photonics connected with microresonator frequency combs[J]. Front. Optoelectron., 2016, 9(2): 238-248.
[12] Ming LI,Ninghua ZHU. Recent advances in microwave photonics[J]. Front. Optoelectron., 2016, 9(2): 160-185.
[13] Zhao WU,Yu YU,Xinliang ZHANG. Chromatic dispersion monitoring using semiconductor optical amplifier[J]. Front. Optoelectron., 2014, 7(3): 399-405.
[14] Huiqi LIAO, Ming TANG, Hailiang ZHANG, Yiwei XIE. Tunable and programmable fiber ring laser based on digital-controlled chirped fiber Bragg grating[J]. Front Optoelec, 2013, 6(4): 468-471.
[15] Zhengxuan LI, Lilin YI, Weisheng HU. Key technologies and system proposals of TWDM-PON[J]. Front Optoelec, 2013, 6(1): 46-56.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed