Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2017, Vol. 10 Issue (4) : 402-408    https://doi.org/10.1007/s12200-017-0713-9
RESEARCH ARTICLE
Indium tin oxide-free inverted polymer solar cells with ultrathin metal transparent electrodes
Tao YUAN, Zhonghuan CAO, Guoli TU()
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(419 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Efficient indium tin oxide (ITO)-free inverted polymer solar cells (PSCs) were fabricated by applying ultrathin metal transparent electrodes as sunlight incident electrodes. Smooth and continuous Ag film of 4 nm thickness was developed through the introduction of a 2 nm Au seed layer. Ultrathin Ag transparent electrode with an average transmittance of up to 80% from 480 to 680 nm and a sheet resistance of 35.4 W/sq was obtained through the introduction of a ZnO anti-reflective layer. The ultrathin metal electrode could be directly used as cathode in polymer solar cells without oxygen plasma treatment. ITO-free inverted PSCs obtained a power conversion efficiency (PCE) of 5.2% by utilizing the ultrathin metal transparent electrodes. These results demonstrated a simple method of fabricating ITO-free inverted PSCs.

Keywords polymer solar cells      ultrathin metal transparent electrodes      seed layer      anti-reflective layer     
Corresponding Author(s): Guoli TU   
Just Accepted Date: 21 June 2017   Online First Date: 22 August 2017    Issue Date: 21 December 2017
 Cite this article:   
Tao YUAN,Zhonghuan CAO,Guoli TU. Indium tin oxide-free inverted polymer solar cells with ultrathin metal transparent electrodes[J]. Front. Optoelectron., 2017, 10(4): 402-408.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-017-0713-9
https://academic.hep.com.cn/foe/EN/Y2017/V10/I4/402
Fig.1  AFM images of (a) glass/MoO3/Ag(6 nm) and (b) glass/MoO3/Au (2 nm)/Ag (4 nm)
Fig.2  (a) Histogram of the surface height values for glass/MoO3/Ag (6 nm) and glass/MoO3/Au (2 nm)/Ag (4 nm); (b) transmittance of glass/MoO3/Ag (6 nm) and glass/MoO3/Au (2 nm)/Ag (4 nm) from 300 to 800 nm
thickness/nmtransmittance/%RMS/nmRs/(W·sq−1)
069.50.4040.3
1877.60.7835.3
2779.60.8135.4
3975.10.8344.0
Tab.1  Average transmittance, RMS, and Rs of glass/MoO3/Au/Ag modified by 18, 27, and 39 nm ZnO
Fig.3  (a) Modeled and (b) measured transmission of metal electrode modified by ZnO films
Fig.4  AFM images of glass/MoO3/Au/Ag modified by (a) 18, (b) 27, and (c) 39 nm ZnO
Fig.5  (a) Device structure and (b) energy level diagram of ultrathin metal electrode-based inverted polymer solar cells
cathodeVOC/VJSC/(mA·cm−2)FF/%PCE/%
glass/MoO3/Au/Ag0.7111.6762.85.20
ITO0.7114.9766.07.01
Tab.2  Detailed devices parameters for the PTB7:PC71BM PSCs with different incident electrodes
Fig.6  (a) J–V curves obtained under the illumination of AM 1.5G 100 mW/cm2 for the PTB7:PC71BM PSCs with different incident electrodes; and (b) transmittance and Rs of different electrodes
  Fig. S1Transmittance spectra of pure glass and MoO3 deposited on glass substrates
  Fig. S2 Chemical structures of PTB7 and PC71BM
  Fig. S3 AFM image of (a) ITO substrate and (b) ZnO film deposited on an ITO substrate
1 Li G, Zhu R, Yang Y. Polymer solar cells. Nature Photonics, 2012, 6(3): 153–161
https://doi.org/10.1038/nphoton.2012.11
2 Yu G, Gao J, Hummelen J C, Wudl F, Heeger A J. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science, 1995, 270(5243): 1789–1791
https://doi.org/10.1126/science.270.5243.1789
3 Mazzio K A, Luscombe C K. The future of organic photovoltaics. Chemical Society Reviews, 2015, 44(1): 78–90
https://doi.org/10.1039/C4CS00227J pmid: 25198769
4 Liu Y, Zhao J, Li Z, Mu C, Ma W, Hu H, Jiang K, Lin H, Ade H, Yan H. Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nature Communications, 2014, 5: 5293
https://doi.org/10.1038/ncomms6293 pmid: 25382026
5 Liang Y, Xu Z, Xia J, Tsai S T, Wu Y, Li G, Ray C, Yu L. For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Advanced Materials, 2010, 22(20): E135–E138
https://doi.org/10.1002/adma.200903528 pmid: 20641094
6 Zhao W, Qian D, Zhang S, Li S, Inganäs O, Gao F, Hou J. Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability. Advanced Materials, 2016, 28(23): 4734–4739
https://doi.org/10.1002/adma.201600281 pmid: 27061511
7 Lu L, Kelly M A, You W, Yu L. Status and prospects for ternary organic photovoltaics. Nature Photonics, 2015, 9(8): 491–500
https://doi.org/10.1038/nphoton.2015.128
8 Ouyang X H, Peng R X, Ai L, Zhang X Y, Ge Z Y. Efficient polymer solar cells employing a non-conjugated small-molecule electrolyte. Nature Photonics, 2015, 9(8): 520–524
https://doi.org/10.1038/nphoton.2015.126
9 Huang L, Chen L, Huang P, Wu F, Tan L, Xiao S, Zhong W, Sun L, Chen Y. Triple dipole effect from self-assembled small-molecules for high performance organic photovoltaics. Advanced Materials, 2016, 28(24): 4852–4860
https://doi.org/10.1002/adma.201600197 pmid: 27115312
10 Zhang Z G, Qi B, Jin Z, Chi D, Qi Z, Li Y, Wang J. Perylene diimides: a thickness-insensitive cathode interlayer for high performance polymer solar cells. Energy & Environmental Science, 2014, 7(6): 1966–1973
https://doi.org/10.1039/c4ee00022f
11 He Z, Zhong C, Su S, Xu M, Wu H, Cao Y. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nature Photonics, 2012, 6(9): 593–597
https://doi.org/10.1038/nphoton.2012.190
12 Li S, Ye L, Zhao W, Zhang S, Mukherjee S, Ade H, Hou J. Energy-level modulation of small-molecule electron acceptors to achieve over 12% efficiency in polymer solar cells. Advanced Materials, 2016, 28(42): 9423–9429
https://doi.org/10.1002/adma.201602776 pmid: 27606970
13 Sergeant N P, Hadipour A, Niesen B, Cheyns D, Heremans P, Peumans P, Rand B P. Design of transparent anodes for resonant cavity enhanced light harvesting in organic solar cells. Advanced Materials, 2012, 24(6): 728–732
https://doi.org/10.1002/adma.201104273 pmid: 22213161
14 Kumar A, Zhou C. The race to replace tin-doped indium oxide: which material will win? ACS Nano, 2010, 4(1): 11–14
https://doi.org/10.1021/nn901903b pmid: 20099909
15 Kim N, Kee S, Lee S H, Lee B H, Kahng Y H, Jo Y R, Kim B J, Lee K. Highly conductive PEDOT:PSS nanofibrils induced by solution-processed crystallization. Advanced Materials, 2014, 26(14): 2268–2272
https://doi.org/10.1002/adma.201304611 pmid: 24338693
16 Wu Z, Chen Z, Du X, Logan J M, Sippel J, Nikolou M, Kamaras K, Reynolds J R, Tanner D B, Hebard A F, Rinzler A G. Transparent, conductive carbon nanotube films. Science, 2004, 305(5688): 1273–1276
https://doi.org/10.1126/science.1101243 pmid: 15333836
17 Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y, Hong B H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 2009, 457(7230): 706–710
https://doi.org/10.1038/nature07719 pmid: 19145232
18 Wu H, Kong D, Ruan Z, Hsu P C, Wang S, Yu Z, Carney T J, Hu L, Fan S, Cui Y. A transparent electrode based on a metal nanotrough network. Nature Nanotechnology, 2013, 8(6): 421–425
https://doi.org/10.1038/nnano.2013.84 pmid: 23685985
19 Garnett E C, Cai W, Cha J J, Mahmood F, Connor S T, Greyson Christoforo M, Cui Y, McGehee M D, Brongersma M L. Self-limited plasmonic welding of silver nanowire junctions. Nature Materials, 2012, 11(3): 241–249
https://doi.org/10.1038/nmat3238 pmid: 22306769
20 Hu L, Wu H, Cui Y. Metal nanogrids, nanowires, and nanofibers for transparent electrodes. MRS Bulletin, 2011, 36(10): 760–765
https://doi.org/10.1557/mrs.2011.234
21 Kang H, Jung S, Jeong S, Kim G, Lee K. Polymer-metal hybrid transparent electrodes for flexible electronics. Nature Communications, 2015, 6: 6503
https://doi.org/10.1038/ncomms7503 pmid: 25790133
22 Lenk S, Schwab T, Schubert S, Müller-Meskamp L, Leo K, Gather M C, Reineke S. White organic light-emitting diodes with 4 nm metal electrode. Applied Physics Letters, 2015, 107(16): 163302
https://doi.org/10.1063/1.4934274
23 Formica N, Ghosh D S, Carrilero A, Chen T L, Simpson R E, Pruneri V. Ultrastable and atomically smooth ultrathin silver films grown on a copper seed layer. ACS Applied Materials & Interfaces, 2013, 5(8): 3048–3053
https://doi.org/10.1021/am303147w pmid: 23514424
24 Schwab T, Schubert S, Hofmann S, Fröbel M, Fuchs C, Thomschke M, Müller-Meskamp L, Leo K, Gather M C. Highly efficient color stable inverted white top-emitting OLEDs with ultra-thin wetting layer top electrodes. Advanced Optical Materials, 2013, 1(10): 707–713
https://doi.org/10.1002/adom.201300241
25 Qian L, Zheng Y, Choudhury K R, Bera D, So F, Xue J, Holloway P H. Electroluminescence from light-emitting polymer/ZnO nanoparticle heterojunctions at sub-bandgap voltages. Nano Today, 2010, 5(5): 384–389
https://doi.org/10.1016/j.nantod.2010.08.010
26 Schubert S, Meiss J, Müller-Meskamp L, Leo K. Improvement of transparent metal top electrodes for organic solar cells by introducing a high surface energy seed layer. Advanced Energy Materials, 2013, 3(4): 438–443
https://doi.org/10.1002/aenm.201200903
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed