Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2017, Vol. 10 Issue (3) : 299-307    https://doi.org/10.1007/s12200-017-0719-3
RESEARCH ARTICLE
Microperforation of the human nail plate by radiation of erbium lasers
Andrey V. BELIKOV(), Andrey N. SERGEEV, Sergey N. SMIRNOV, Anastasia D. TAVALINSKAYA
Department of Laser Technologies and Systems, Saint-Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Saint Petersburg 197101, Russia
 Download: PDF(575 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The nail plate forms a barrier that limits the effectiveness of drug delivery in the treatment of nail diseases and prevents the outflow of fluid in the case of subungual hematoma formation. Microperforation of the nail plate through laser radiation can increase the effectiveness of drug delivery and ensure the possibility of blood outflow.

This study detected and identified the type and threshold of effects that arise from exposing the nail plate to Yb,Er:Glass (l= 1.54 µm) and Er:YLF (l= 2.81 µm) laser radiation. The rate and efficiency of nail plate ablation by the radiation of these lasers were studied. The effect of the storage time of a freshly extracted nail plate in open air on its ablation rate by Er:YLF (l=2.81 µm) laser radiation was also investigated.

The impact of the Yb,Er:Glass and Er:YLF laser pulses on the nail plate caused bleaching, carbonization, ablation with microcrater formation, and microperforation. The laser energy densities WE (thresholds) required for these effects were determined. The maximum ablation rate for Yb,Er:Glass laser radiation was 8 µm/pulse at WE= 91±2 J/cm2, whereas that for Er:YLF laser radiation was 12 µm/pulse at WE= 10.5±0.5 J/cm2. The maximum ablation efficiency for Yb,Er:Glass laser radiation was 0.1 µm/mJ at WE = 10.5±0.5 J/cm2, whereas that for Er:YLF laser radiation was 4.6 µm/mJ at WE= 5.3±0.3 J/cm2. The laser ablation rate depends on the storage time and conditions of the freshly extracted nail plate. For example, when exposed to Er:YLF laser radiation, the laser ablation rate decreased by half from the initial maximum value in 96 h of air storage and returned to the initial value after 1 h of storage in distilled water.

Keywords Yb      Er:Glass laser      Er:YLF laser      nail plate      microperforation      ablation rate      ablation efficiency      dehydration     
Corresponding Author(s): Andrey V. BELIKOV   
Just Accepted Date: 30 June 2017   Online First Date: 29 August 2017    Issue Date: 26 September 2017
 Cite this article:   
Andrey V. BELIKOV,Andrey N. SERGEEV,Sergey N. SMIRNOV, et al. Microperforation of the human nail plate by radiation of erbium lasers[J]. Front. Optoelectron., 2017, 10(3): 299-307.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-017-0719-3
https://academic.hep.com.cn/foe/EN/Y2017/V10/I3/299
Fig.1  Experimental setup for processing the nail plate with Yb,Er:Glass laser radiation (a): 1 – Yb,Er:Glass laser, 2 – Fresnel attenuator, 3 – convex lens F = 11 mm, 4 – nail plate on the glass substrate, 5 – germanium photodetector, and 6 – oscilloscope; (b) temporal structure of the Yb,Er:Glass laser pulse
Fig.2  Experimental setup for processing the nail plate with Er:YLF laser radiation (a): 1 – Er:YLF laser, 2 – convex lens F = 50 mm, 3 – nail plate on the glass substrate, 4 – germanium photodetector, and 5 – oscilloscope; (b) temporal structure of the Er:YLF laser pulse (E = 2 mJ)
Fig.3  Images of the nail plates after the impact of Yb,Er:Glass laser: (a)–(d) top view of the microdamages in the nail plates and (e)–(h) longitudinal sections
Fig.4  Images of the nail plates after the impact of Er:YLF laser: (a)–(d) top view of the microdamages in the nail plates and (e)–(h) longitudinal sections
Fig.5  Dependence of the (a) rate and (b) efficiency of human nail plate ablation on the energy density of Yb,Er:Glass laser radiation (l = 1.54 µm, N = 100)
Fig.6  Dependence of the rate of human nail plate ablation by Er:YLF laser radiation on the pulse number (N)
Fig.7  Dependence of the (a) rate and (b) efficiency of human nail plate ablation on the energy density of Er:YLF laser radiation (l = 2.81 µm, N = 10)
Fig.8  Microcrater images in the nail plate formed by Er:YLF laser radiation after the sample storage in open air (a – 0.5 h; b – 1 h; c – 2 h; d – 4 h; e – 8 h; f – 48 h; g – 72 h; h – 96 h) and (i) after 1 h of storage in water after 96 h of storage in open air
Fig.9  Dependence of the (a) microcrater depth and (b) ablation rate of the nail plate by Er:YLF laser radiation on its storage time in open air and after 1 h of storage in water after 96 h of storage in open air
1 Murdan S. Drug delivery to the nail following topical application. International Journal of Pharmaceutics, 2002, 236(1–2): 1–26
https://doi.org/10.1016/S0378-5173(01)00989-9 pmid: 11891066
2 Saner M V, Kulkarni A D, Pardeshi C V. Insights into drug delivery across the nail plate barrier. Journal of Drug Targeting, 2014, 22(9): 769–789
https://doi.org/10.3109/1061186X.2014.929138 pmid: 24964054
3 Walters K A, Abdalghafor H M, Lane M E. The human nail--barrier characterisation and permeation enhancement. International Journal of Pharmaceutics, 2012, 435(1): 10–21
https://doi.org/10.1016/j.ijpharm.2012.04.024 pmid: 22521879
4 Elkeeb R, AliKhan A, Elkeeb L, Hui X, Maibach H I. Transungual drug delivery: current status. International Journal of Pharmaceutics, 2010, 384(1–2): 1–8
https://doi.org/10.1016/j.ijpharm.2009.10.002 pmid: 19819318
5 Gain J M, Bogdan V G, Popkov O V, Alekseev S A. Surgery of Ingrown Nail: Monograph. Minsk: Publisher Zmitser Kolas, 2007, 224 (in Russian)
6 Murdan S. Enhancing the nail permeability of topically applied drugs. Expert Opinion on Drug Delivery, 2008, 5(11): 1267–1282
https://doi.org/10.1517/17425240802497218 pmid: 18976136
7 Brown M B, Khengar R H, Turner R B, Forbes B, Traynor M J, Evans C R G, Jones S A. Overcoming the nail barrier: a systematic investigation of ungual chemical penetration enhancement. International Journal of Pharmaceutics, 2009, 370(1–2): 61–67
https://doi.org/10.1016/j.ijpharm.2008.11.009 pmid: 19071202
8 Tsai M T, Tsai T Y, Shen S C, Ng C Y, Lee Y J, Lee J D, Yang C H. Evaluation of laser-assisted trans-nail drug delivery with optical coherence tomography. Sensors (Basel), 2016, 16(12): 2111
https://doi.org/10.3390/s16122111 pmid: 27973451
9 Chiu W S, Belsey N A, Garrett N L, Moger J, Price G J, Delgado-Charro M B, Guy R H. Drug delivery into microneedle-porated nails from nanoparticle reservoirs. Journal of Controlled Release, 2010, 220(Pt A): 98–106
10 Salter S A, Ciocon D H, Gowrishankar T R, Kimball A B. Controlled nail trephination for subungual hematoma. The American Journal of Emergency Medicine, 2006, 24(7): 875–877
https://doi.org/10.1016/j.ajem.2006.03.029 pmid: 17098113
11 Adams R M. Effects of mechanical trauma on nails. American Journal of Industrial Medicine, 1985, 8(4–5): 273–280
https://doi.org/10.1002/ajim.4700080405 pmid: 4073026
12 Patel L. Management of simple nail bed lacerations and subungual hematomas in the emergency department. Pediatric Emergency Care, 2014, 30(10): 742–745, quiz 746–748
https://doi.org/10.1097/PEC.0000000000000241 pmid: 25275357
13 Jelínková H. Lasers for Medical Applications: Diagnostics, Therapy and Surgery. Amsterdam: Elsevier, 2013
14 Neev J, Stuart Nelson J, Critelli M, McCullough J L, Cheung E, Carrasco W A, Rubenchik A M, Da Silva L B, Perry M D, Stuart B C. Ablation of human nail by pulsed lasers. Lasers in Surgery and Medicine, 1997, 21(2): 186–192
https://doi.org/10.1002/(SICI)1096-9101(1997)21:2<186::AID-LSM10>3.0.CO;2-D pmid: 9261796
15 Morais O O, Costa I M, Gomes C M, Shinzato D H, Ayres G M, Cardoso R M. The use of the Er:YAG 2940 nm laser associated with amorolfine lacquer in the treatment of onychomycosis. Anais Brasileiros de Dermatologia, 2013, 88(5): 847–849
https://doi.org/10.1590/abd1806-4841.20131932 pmid: 24173203
16 Lim E H, Kim H R, Park Y O, Lee Y, Seo Y J, Kim C D, Lee J H, Im M. Toenail onychomycosis treated with a fractional carbon-dioxide laser and topical antifungal cream. Journal of the American Academy of Dermatology, 2014, 70(5): 918–923
https://doi.org/10.1016/j.jaad.2014.01.893 pmid: 24655819
17 Myers M J, Myers J A, Roth F, Guo B, Hardy C R, Myers S, Carrabba A, Trywick C B S, Griswold J R, Mazzochi A. Treatment of toe nail fungus infection using an AO Q-switched eye-safe erbium glass laser at 1534 nm. Proceedings of SPIE, 2013, 8565: 85650W1–9
18 Kozarev J. Novel laser therapy in treatment of onychomycosis. Journal of the Laser and Health Academy, 2010, 2010(1): 1–8
19 Schulz B, Chan D, Bäckström J, Rübhausen M, Wittern K P, Wessel S, Wepf R, Williams S. Hydration dynamics of human fingernails: an ellipsometric study. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2002, 65(6): 061913
https://doi.org/10.1103/PhysRevE.65.061913 pmid: 12188765
20 Jacques S L. Optical properties of biological tissues: a review. Physics in Medicine and Biology, 2013, 58(11): R37–R61
https://doi.org/10.1088/0031-9155/58/11/R37 pmid: 23666068
[1] Love KUMAR, Amarpal SINGH, Vishal SHARMA. Analysis on multiple optical line terminal passive optical network based open access network[J]. Front. Optoelectron., 2019, 12(2): 208-214.
[2] Xiaoxia LIU, Chaoping LIU, Gui CHEN, Haiqing LI. Influence of cerium ions on thermal bleaching of photo-darkened ytterbium-doped fibers[J]. Front. Optoelectron., 2018, 11(4): 394-399.
[3] Xiaoliang SHEN, Yue WANG, Haitao GUO, Chunxiao LIU. Near-infrared carbon-implanted Er3+/Yb3+ co-doped phosphate glass waveguides[J]. Front. Optoelectron., 2018, 11(3): 291-295.
[4] Lauro J. Q. MAIA, Jyothis THOMAS, Yannick LEDEMI, Kummara V. KRISHNAIAH, Denis SELETSKIY, Younès MESSADDEQ, Raman KASHYAP. Photonic properties of novel Yb3+ doped germanium-lead oxyfluoride glass-ceramics for laser cooling applications[J]. Front. Optoelectron., 2018, 11(2): 189-198.
[5] Daoxin DAI,Yanlong YIN,Longhai YU,Hao WU,Di LIANG,Zhechao WANG,Liu LIU. Silicon-plus photonics[J]. Front. Optoelectron., 2016, 9(3): 436-449.
[6] Bat-El COHEN,Lioz ETGAR. Parameters that control and influence the organo-metal halide perovskite crystallization and morphology[J]. Front. Optoelectron., 2016, 9(1): 44-52.
[7] Xiaowei GUAN,Hao WU,Daoxin DAI. Silicon hybrid nanoplasmonics for ultra-dense photonic integration[J]. Front. Optoelectron., 2014, 7(3): 300-319.
[8] Ruixi ZENG, Yuan ZHANG, Sailing HE. Energy intensity analysis of modes in hybrid plasmonic waveguide[J]. Front Optoelec, 2012, 5(1): 68-72.
[9] Qingqing MIAO, Mingxing WU, Wei GUO, Tingli MA. Studies of high-efficient and low-cost dye-sensitized solar cells[J]. Front Optoelec Chin, 2011, 4(1): 103-107.
[10] Yang LIU, Hengli ZHANG, Ying YAN, Huaijin ZHANG, Jingliang HE, Jianguo XIN. A 123 W Nd:YVO4 slab laser with high beam quality output[J]. Front Optoelec Chin, 2009, 2(4): 407-409.
[11] Guangsheng WU, Deming LIU, Shu ZHANG, Chuanhao ZHANG, Yuguang CHANG. Novel access technology based on hybrid Ethernet passive optical network and Ethernet passive electronic network[J]. Front Optoelec Chin, 2009, 2(3): 328-333.
[12] Shufeng LI, Chengren LI, Changlie SONG. Theoretical and experimental research on Er-doped and Yb-Er co-doped Al2O3 waveguide amplifiers[J]. Front Optoelec Chin, 2008, 1(3-4): 329-335.
[13] LI Baozeng, WANG Anting, GUO Hai, MING Hai, CHEN Xuesheng, JIANG Hua, ZHENG Zhiqiang. Investigation of up-conversion luminescence of Er and Er/Yb ions doped in PLZT for active electro-optical applications[J]. Front. Optoelectron., 2008, 1(1-2): 142-146.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed