Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2017, Vol. 10 Issue (3) : 308-316    https://doi.org/10.1007/s12200-017-0727-3
RESEARCH ARTICLE
Characterization of irradiated nails in terms of depolarizing Mueller matrix decompositions
Sergey SAVENKOV1(), Alexander V. PRIEZZHEV2, Yevgen OBEREMOK1, Sergey SHOLOM3, Ivan KOLOMIETS1
1. Taras Shevchenko National University of Kyiv, Faculty of Radio Physics, Electronics, and Computer Systems, Vladimirskaya str. 64, 01033 Kiev, Ukraine
2. Lomonosov Moscow State University, Department of Physics and International Laser Center, Vorobiovy Gory, 119992 Moscow, Russia
3. Oklahoma State University, Department of Physics, 145 Physical Sciences Building, Stillwater, Oklahoma 74078, USA
 Download: PDF(485 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Mueller matrices were measured for natural (or reference) samples of human nails and samples irradiated by a 2 Gy ionizing radiation dose. The elements of the total Mueller matrix as a function of scattering angle were measured in backscattering mode at a wavelength of 632.8 nm. Several types of depolarizing Mueller matrix decompositions, namely, Ossikovsky, Williams, and Chipman, were calculated as a function of scattering angle for each nail sample. A comparative analysis of the sensitivity of the Mueller matrix decompositions in relation to the problem of emergency dose assessment in nails was performed.

Keywords Mueller matrix      depolarization      human nails      ionizing radiation dose      scattering     
Corresponding Author(s): Sergey SAVENKOV   
Just Accepted Date: 18 July 2017   Online First Date: 23 August 2017    Issue Date: 26 September 2017
 Cite this article:   
Sergey SAVENKOV,Alexander V. PRIEZZHEV,Yevgen OBEREMOK, et al. Characterization of irradiated nails in terms of depolarizing Mueller matrix decompositions[J]. Front. Optoelectron., 2017, 10(3): 308-316.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-017-0727-3
https://academic.hep.com.cn/foe/EN/Y2017/V10/I3/308
Fig.1  Schematic illustration of the experiment, αinp=αout
Fig.2  Dependence of elements of the matrix MΔd on observation angle for samples (a) AL, (b) F23, (c) Joe
Fig.3  Dependence of elements of the matrix MW on observation angle for samples (a) AL, (b) F23, (c) Joe
Fig.4  Dependence of elements of the matrix MΔ on observation angle for samples (a) AL, (b) F23, (c) Joe
1 McKeever S W S, Sholom S. Biodosimetry versus physical dosimetry for emergency dose assessment following large-scale radiological exposures. Radiation Measurements, 2016, 92: 8–18 doi:10.1016/j.radmeas.2016.06.003
2 Bailiff I K, Sholom S, McKeever S W S. Retrospective and emergency dosimetry in response to radiologic alincidents and nuclear mass-casualty events, a review. Radiation Measurements, 2016, 94: 83–139
https://doi.org/10.1016/j.radmeas.2016.09.004
3 Ainsbury E, Badie C, Barnard S, Manning G, Moquet J, Abend M, Antunes A C, Barrios L, Bassinet C, Beinke C, Bortolin E, Bossin L, Bricknell C, Brzoska K, Buraczewska I, Castaño C H, Čemusová Z, Christiansson M, Cordero S M, Cosler G, Monaca S D, Desangles F, Discher M, Dominguez I, Doucha-Senf S, Eakins J, Fattibene P, Filippi S, Frenzel M, Georgieva D, Gregoire E, Guogyte K, Hadjidekova V, Hadjiiska L, Hristova R, Karakosta M, Kis E, Kriehuber R, Lee J, Lloyd D, Lumniczky K, Lyng F, Macaeva E, Majewski M, Vanda Martins S, McKeever S W, Meade A, Medipally D, Meschini R, M’kacher R, Gil O M, Montero A, Moreno M, Noditi M, Oestreicher U, Oskamp D, Palitti F, Palma V, Pantelias G, Pateux J, Patrono C, Pepe G, Port M, Prieto M J, Quattrini M C, Quintens R, Ricoul M, Roy L, Sabatier L, Sebastià N, Sholom S, Sommer S, Staynova A, Strunz S, Terzoudi G, Testa A, Trompier F, Valente M, Hoey O V, Veronese I, Wojcik A, Woda C. Integration of new biological and physical retrospective dosimetry methods into EU emergency response plans- joint RENEB and EURADOS inter-laboratory comparisons. International Journal of Radiation Biology, 2017, 93(1): 99–109
https://doi.org/10.1080/09553002.2016.1206233 pmid: 27437830
4 Bassinet C, Woda C, Bortolin E, Della Monaca S, Fattibene P, Quattrini M S, Bulanek B, Ekendahl D, Burbidge C, Cauwels V, Kouroukla E, Geber-Bergstrand T, Piasjkowski A, Marczewska B, Bilksi P, Sholom S, McKeever S W S, Smith R, Veronese I, Gallim A, Panzeri L, Martini M. Retrospective radiation dosimetry using OSL from electronic components: results of an inter-laboratory comparison. Radiation Measurements, 2014, 71: 475–479
https://doi.org/10.1016/j.radmeas.2014.03.016
5 Sholom S, McKeever S W S. Emergency OSL/TL dosimetry with integrated circuits from mobile phones. In: Proceedings of SPIE Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XVI, 921319. San Diego, California, United States, 2014, 921319
6 Sholom S, McKeever S W S. Integrated circuits from mobile phones as possible emergency OSL/TL dosimeters. Radiation Protection Dosimetry, 2016, 170(1-4): 398–401
https://doi.org/10.1093/rpd/ncv446 pmid: 26516131
7 Discher M, Woda C, Fiedler I. Improvement of dose determination using glass display of mobile phones for accident dosimetry. Radiation Measurements, 2013, 56: 240–243
https://doi.org/10.1016/j.radmeas.2013.01.027
8 Discher M, Bortolin E, Woda C. Investigations of touchscreen glasses from mobile phones for retrospective and accident dosimetry. Radiation Measurements, 2016, 89: 44–51
https://doi.org/10.1016/j.radmeas.2016.02.032
9 Pascu A, Vasiliniuc S, Zeciu-Dolha M, Timar-Gabor A. The potential of luminescence signals from electronic components for accident dosimetry. Radiation Measurements, 2013, 56: 384–388
https://doi.org/10.1016/j.radmeas.2013.03.013
10 Sholom S, Dewitt R, Simon S L, Bouville A, McKeever S W S. Emergency dose estimation using optically stimulated luminescence from human tooth enamel. Radiation Measurements, 2011, 46(9): 778–782
https://doi.org/10.1016/j.radmeas.2011.03.008 pmid: 21949479
11 Sholom S, Dewitt R, Simon S, Bouville A, McKeever S. Emergency optically stimulated luminescence dosimetry using different materials. Radiation Measurements, 2011, 46(12): 1866–1869
https://doi.org/10.1016/j.radmeas.2011.03.004 pmid: 22125409
12 Sholom S, Desrosiers M. EPR and OSL emergency dosimetry with teeth: a direct comparison of two techniques. Radiation Measurements, 2014, 71: 494–497
https://doi.org/10.1016/j.radmeas.2014.03.015
13 Williams B B, Flood A B, Salikhov I, Kobayashi K, Dong R, Rychert K, Du G, Schreiber W, Swartz H M. In vivo EPR tooth dosimetry for triage after a radiation event involving large populations. Radiation and Environmental Biophysics, 2014, 53(2): 335–346
https://doi.org/10.1007/s00411-014-0534-9 pmid: 24711003
14 Tipikin D S, Swarts S G, Sidabras J W, Trompier F, Swartz H M. Possible nature of the stable radiation-induced signal in nails: high-field EPR, confirming chemical synthesis, quantum chemical calculations. Radiation Protection Dosimetry, 2016, 172(1-3): 112–120
https://doi.org/10.1093/rpd/ncw216 pmid: 27522053
15 Marciniak A, Ciesielski B. EPR dosimetry in nails – a review. Applied Spectroscopy Reviews, 2016, 51(1): 73–92
https://doi.org/10.1080/05704928.2015.1101699
16 Savenkov S, Priezzhev A, Oberemok Y, Sholom S, Kolomiets I, Chunikhina K. Characterization of natural and irradiated nails by means of the depolarization metrics. Journal of Biomedical Optics, 2016, 21(7): 071108
https://doi.org/10.1117/1.JBO.21.7.071108 pmid: 26927390
17 Gil J J, Bernabeu E. A depolarization criterion in Mueller matrices. Optica Acta, 1985, 32(3): 259–261 
https://doi.org/10.1080/713821732
18 Gil J J, Bernabeu E. Depolarization and polarization indexes of an optical system. Optica Acta, 1986, 33(2): 185–189
https://doi.org/10.1080/713821924
19 Espinosa-Luna R, Bernabeu E. On the Q(M) depolarization metric. Optics Communications, 2007, 277(2): 256–258 
https://doi.org/10.1016/j.optcom.2007.05.051
20 Ossikovski R. Alternative depolarization criteria for Mueller matrices. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2010, 27(4): 808–814
https://doi.org/10.1364/JOSAA.27.000808 pmid: 20360822
21 Cloude S R, Pottier E. Concept of polarization entropy in optical scattering. Optical Engineering (Redondo Beach, Calif.), 1995, 34(6): 1599–1610
https://doi.org/10.1117/12.202062
22 Cloude S R. Group theory and polarization algebra. Optik (Stuttgart), 1986, 7: 26–36
23 Savenkov S N, Muttiah R S, Oberemok Y A. Transmitted and reflected scattering matrices from an English oak leaf. Applied Optics, 2003, 42(24): 4955–4962
https://doi.org/10.1364/AO.42.004955 pmid: 12952343
24 Savenkov S N, Mishchenko L T, Muttiah R S, Oberemok Y A, Mishchenko I A. Mueller polarimetry of virus-infected and healthy wheat under field and microgravity conditions. Journal of Quantitative Spectroscopy & Radiative Transfer, 2004, 88(1-3): 327–343
https://doi.org/10.1016/j.jqsrt.2003.12.035
25 Savenkov S N, Grygoruk V I, Muttiah R S, Yushtin K E, Oberemok Ye A, Yakubchak V V. Effective dichroism in forward scattering by inhomogeneous birefringent medium. Journal of Quantitative Spectroscopy & Radiative Transfer, 2009, 110(1-2): 30–42
https://doi.org/10.1016/j.jqsrt.2008.09.002
26 Ossikovski R. Analysis of depolarizing Mueller matrices through a symmetric decomposition. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 2009, 26(5): 1109–1118
https://doi.org/10.1364/JOSAA.26.001109 pmid: 19412227
27 Williams M W. Depolarization and cross polarization in ellipsometry of rough surfaces. Applied Optics, 1986, 25(20): 3616–3622
https://doi.org/10.1364/AO.25.003616 pmid: 18235668
28 Lu S Y, Chipman R A. Interpretation of Mueller matrices based on polar decomposition. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 1996, 13(5): 1106–1113
https://doi.org/10.1364/JOSAA.13.001106
29 Savenkov S N. Optimization and structuring of the instrument matrix for polarimetric measurements. Optical Engineering (Redondo Beach, Calif.), 2002, 41(5): 965–972
https://doi.org/10.1117/1.1467361
30 Gil J J, San José I. Reduced form of a Mueller matrix  Journal of Modern Optics, 2016, 63(16): 1579–1583
https://doi.org/10.1080/09500340.2016.1162337
[1] Tatiana A. SAVELIEVA, Marina N. KURYANOVA, Ekaterina V. AKHLYUSTINA, Kirill G. LINKOV, Gennady A. MEEROVICH, Victor B. LOSCHENOV. Attenuation correction technique for fluorescence analysis of biological tissues with significantly different optical properties[J]. Front. Optoelectron., 2020, 13(4): 360-370.
[2] Kuanhong XU, Xiaonong ZHU, Peng HUANG, Zhiqiang Yu, Nan ZHANG. Origin of peculiar inerratic diffraction patterns recorded by charge-coupled device cameras[J]. Front. Optoelectron., 2019, 12(2): 174-179.
[3] Yanjun ZHANG,Jinrui XU,Xinghu FU,Jinjun LIU,Yongsheng TIAN. Hybrid algorithm combining genetic algorithm with back propagation neural network for extracting the characteristics of multi-peak Brillouin scattering spectrum[J]. Front. Optoelectron., 2017, 10(1): 62-69.
[4] Heng WANG, Peng XIANG, Mi XU, Guanghui LIU, Xiong LI, Zhiliang KU, Yaoguang RONG, Linfeng LIU, Min HU, Ying YANG, Hongwei HAN. High efficiency monobasal solid-state dye-sensitized solar cell with mesoporous TiO2 beads as photoanode[J]. Front Optoelec, 2013, 6(4): 413-417.
[5] Bushra NAWAZ, Rameez ASIF. Impact of polarization mode dispersion and nonlinearities on 2-channel DWDM chaotic communication systems[J]. Front Optoelec, 2013, 6(3): 312-317.
[6] Muhammad Idrees AFRIDI, Jie ZHANG, Yousaf KHAN, Jiawei HAN, Aftab HUSSEIN, Shahab AHMAD. Impact of Rayleigh backscattering on single/dual feeder fiber WDM-PON architectures based on array waveguide gratings[J]. Front Optoelec, 2013, 6(1): 102-107.
[7] Duan LIU, Songnian FU, Ming TANG, Ping SHUM, Deming LIU. Rayleigh backscattering noise in single-fiber loopback duplex WDM-PON architecture[J]. Front Optoelec, 2012, 5(4): 435-438.
[8] Xiaoyan SUN, Peng HUANG, Jiefeng ZHAO, Li WEI, Nan ZHANG, Dengfeng KUANG, Xiaonong ZHU. Characteristic control of long period fiber grating (LPFG) fabricated by infrared femtosecond laser[J]. Front Optoelec, 2012, 5(3): 334-340.
[9] Yueyin SHAO, Yongqian WEI, Zhenghua WANG. Surface-enhanced Raman scattering of sulfate ion based on Ag/Si nanostructure[J]. Front Optoelec Chin, 2011, 4(4): 378-381.
[10] Shilie ZHENG, Sixuan GE, Hao CHI, Xiaofeng JIN, Xianmin ZHANG. Frequency response equalization in phase modulated RoF systems using optical carrier Brillouin processing[J]. Front Optoelec Chin, 2011, 4(3): 277-281.
[11] Zhiyong BAO, Li ZHANG, Yucheng WU. Silver nanoparticles and silver molybdate nanowires complex for surface-enhanced Raman scattering substrate[J]. Front Optoelec Chin, 2011, 4(2): 166-170.
[12] Rujian LIN, Meiwei ZHU, Zheyun ZHOU, Haoshuo CHEN, Jiajun YE. New progress of mm-wave radio-over-fiber system based on OFM[J]. Front Optoelec Chin, 2009, 2(4): 368-378.
[13] Ziheng XU, Deming LIU, Hairong LIU, Qizhen SUN, Zhifeng SUN, Xu ZHANG, Wengang WANG. Design of distributed Raman temperature sensing system based on single-mode optical fiber[J]. Front Optoelec Chin, 2009, 2(2): 215-218.
[14] Deming LIU, Shuang LIU, Hairong LIU. Temperature performance of Raman scattering in data fiber and its application in distributed temperature fiber-optic sensor[J]. Front Optoelec Chin, 2009, 2(2): 159-162.
[15] ZHAO Mingfu, LIAO Qiang, CHEN Yan, ZHONG Nianbing. Fiber sensor of online biomass testing[J]. Front. Optoelectron., 2008, 1(1-2): 85-90.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed