|
|
|
Characterization of irradiated nails in terms of depolarizing Mueller matrix decompositions |
Sergey SAVENKOV1( ), Alexander V. PRIEZZHEV2, Yevgen OBEREMOK1, Sergey SHOLOM3, Ivan KOLOMIETS1 |
1. Taras Shevchenko National University of Kyiv, Faculty of Radio Physics, Electronics, and Computer Systems, Vladimirskaya str. 64, 01033 Kiev, Ukraine 2. Lomonosov Moscow State University, Department of Physics and International Laser Center, Vorobiovy Gory, 119992 Moscow, Russia 3. Oklahoma State University, Department of Physics, 145 Physical Sciences Building, Stillwater, Oklahoma 74078, USA |
|
|
|
|
Abstract Mueller matrices were measured for natural (or reference) samples of human nails and samples irradiated by a 2 Gy ionizing radiation dose. The elements of the total Mueller matrix as a function of scattering angle were measured in backscattering mode at a wavelength of 632.8 nm. Several types of depolarizing Mueller matrix decompositions, namely, Ossikovsky, Williams, and Chipman, were calculated as a function of scattering angle for each nail sample. A comparative analysis of the sensitivity of the Mueller matrix decompositions in relation to the problem of emergency dose assessment in nails was performed.
|
| Keywords
Mueller matrix
depolarization
human nails
ionizing radiation dose
scattering
|
|
Corresponding Author(s):
Sergey SAVENKOV
|
|
Just Accepted Date: 18 July 2017
Online First Date: 23 August 2017
Issue Date: 26 September 2017
|
|
| 1 |
McKeever S W S, Sholom S. Biodosimetry versus physical dosimetry for emergency dose assessment following large-scale radiological exposures. Radiation Measurements, 2016, 92: 8–18 doi:10.1016/j.radmeas.2016.06.003
|
| 2 |
Bailiff I K, Sholom S, McKeever S W S. Retrospective and emergency dosimetry in response to radiologic alincidents and nuclear mass-casualty events, a review. Radiation Measurements, 2016, 94: 83–139
https://doi.org/10.1016/j.radmeas.2016.09.004
|
| 3 |
Ainsbury E, Badie C, Barnard S, Manning G, Moquet J, Abend M, Antunes A C, Barrios L, Bassinet C, Beinke C, Bortolin E, Bossin L, Bricknell C, Brzoska K, Buraczewska I, Castaño C H, Čemusová Z, Christiansson M, Cordero S M, Cosler G, Monaca S D, Desangles F, Discher M, Dominguez I, Doucha-Senf S, Eakins J, Fattibene P, Filippi S, Frenzel M, Georgieva D, Gregoire E, Guogyte K, Hadjidekova V, Hadjiiska L, Hristova R, Karakosta M, Kis E, Kriehuber R, Lee J, Lloyd D, Lumniczky K, Lyng F, Macaeva E, Majewski M, Vanda Martins S, McKeever S W, Meade A, Medipally D, Meschini R, M’kacher R, Gil O M, Montero A, Moreno M, Noditi M, Oestreicher U, Oskamp D, Palitti F, Palma V, Pantelias G, Pateux J, Patrono C, Pepe G, Port M, Prieto M J, Quattrini M C, Quintens R, Ricoul M, Roy L, Sabatier L, Sebastià N, Sholom S, Sommer S, Staynova A, Strunz S, Terzoudi G, Testa A, Trompier F, Valente M, Hoey O V, Veronese I, Wojcik A, Woda C. Integration of new biological and physical retrospective dosimetry methods into EU emergency response plans- joint RENEB and EURADOS inter-laboratory comparisons. International Journal of Radiation Biology, 2017, 93(1): 99–109
https://doi.org/10.1080/09553002.2016.1206233
pmid: 27437830
|
| 4 |
Bassinet C, Woda C, Bortolin E, Della Monaca S, Fattibene P, Quattrini M S, Bulanek B, Ekendahl D, Burbidge C, Cauwels V, Kouroukla E, Geber-Bergstrand T, Piasjkowski A, Marczewska B, Bilksi P, Sholom S, McKeever S W S, Smith R, Veronese I, Gallim A, Panzeri L, Martini M. Retrospective radiation dosimetry using OSL from electronic components: results of an inter-laboratory comparison. Radiation Measurements, 2014, 71: 475–479
https://doi.org/10.1016/j.radmeas.2014.03.016
|
| 5 |
Sholom S, McKeever S W S. Emergency OSL/TL dosimetry with integrated circuits from mobile phones. In: Proceedings of SPIE Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XVI, 921319. San Diego, California, United States, 2014, 921319
|
| 6 |
Sholom S, McKeever S W S. Integrated circuits from mobile phones as possible emergency OSL/TL dosimeters. Radiation Protection Dosimetry, 2016, 170(1-4): 398–401
https://doi.org/10.1093/rpd/ncv446
pmid: 26516131
|
| 7 |
Discher M, Woda C, Fiedler I. Improvement of dose determination using glass display of mobile phones for accident dosimetry. Radiation Measurements, 2013, 56: 240–243
https://doi.org/10.1016/j.radmeas.2013.01.027
|
| 8 |
Discher M, Bortolin E, Woda C. Investigations of touchscreen glasses from mobile phones for retrospective and accident dosimetry. Radiation Measurements, 2016, 89: 44–51
https://doi.org/10.1016/j.radmeas.2016.02.032
|
| 9 |
Pascu A, Vasiliniuc S, Zeciu-Dolha M, Timar-Gabor A. The potential of luminescence signals from electronic components for accident dosimetry. Radiation Measurements, 2013, 56: 384–388
https://doi.org/10.1016/j.radmeas.2013.03.013
|
| 10 |
Sholom S, Dewitt R, Simon S L, Bouville A, McKeever S W S. Emergency dose estimation using optically stimulated luminescence from human tooth enamel. Radiation Measurements, 2011, 46(9): 778–782
https://doi.org/10.1016/j.radmeas.2011.03.008
pmid: 21949479
|
| 11 |
Sholom S, Dewitt R, Simon S, Bouville A, McKeever S. Emergency optically stimulated luminescence dosimetry using different materials. Radiation Measurements, 2011, 46(12): 1866–1869
https://doi.org/10.1016/j.radmeas.2011.03.004
pmid: 22125409
|
| 12 |
Sholom S, Desrosiers M. EPR and OSL emergency dosimetry with teeth: a direct comparison of two techniques. Radiation Measurements, 2014, 71: 494–497
https://doi.org/10.1016/j.radmeas.2014.03.015
|
| 13 |
Williams B B, Flood A B, Salikhov I, Kobayashi K, Dong R, Rychert K, Du G, Schreiber W, Swartz H M. In vivo EPR tooth dosimetry for triage after a radiation event involving large populations. Radiation and Environmental Biophysics, 2014, 53(2): 335–346
https://doi.org/10.1007/s00411-014-0534-9
pmid: 24711003
|
| 14 |
Tipikin D S, Swarts S G, Sidabras J W, Trompier F, Swartz H M. Possible nature of the stable radiation-induced signal in nails: high-field EPR, confirming chemical synthesis, quantum chemical calculations. Radiation Protection Dosimetry, 2016, 172(1-3): 112–120
https://doi.org/10.1093/rpd/ncw216
pmid: 27522053
|
| 15 |
Marciniak A, Ciesielski B. EPR dosimetry in nails – a review. Applied Spectroscopy Reviews, 2016, 51(1): 73–92
https://doi.org/10.1080/05704928.2015.1101699
|
| 16 |
Savenkov S, Priezzhev A, Oberemok Y, Sholom S, Kolomiets I, Chunikhina K. Characterization of natural and irradiated nails by means of the depolarization metrics. Journal of Biomedical Optics, 2016, 21(7): 071108
https://doi.org/10.1117/1.JBO.21.7.071108
pmid: 26927390
|
| 17 |
Gil J J, Bernabeu E. A depolarization criterion in Mueller matrices. Optica Acta, 1985, 32(3): 259–261
https://doi.org/10.1080/713821732
|
| 18 |
Gil J J, Bernabeu E. Depolarization and polarization indexes of an optical system. Optica Acta, 1986, 33(2): 185–189
https://doi.org/10.1080/713821924
|
| 19 |
Espinosa-Luna R, Bernabeu E. On the Q(M) depolarization metric. Optics Communications, 2007, 277(2): 256–258
https://doi.org/10.1016/j.optcom.2007.05.051
|
| 20 |
Ossikovski R. Alternative depolarization criteria for Mueller matrices. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2010, 27(4): 808–814
https://doi.org/10.1364/JOSAA.27.000808
pmid: 20360822
|
| 21 |
Cloude S R, Pottier E. Concept of polarization entropy in optical scattering. Optical Engineering (Redondo Beach, Calif.), 1995, 34(6): 1599–1610
https://doi.org/10.1117/12.202062
|
| 22 |
Cloude S R. Group theory and polarization algebra. Optik (Stuttgart), 1986, 7: 26–36
|
| 23 |
Savenkov S N, Muttiah R S, Oberemok Y A. Transmitted and reflected scattering matrices from an English oak leaf. Applied Optics, 2003, 42(24): 4955–4962
https://doi.org/10.1364/AO.42.004955
pmid: 12952343
|
| 24 |
Savenkov S N, Mishchenko L T, Muttiah R S, Oberemok Y A, Mishchenko I A. Mueller polarimetry of virus-infected and healthy wheat under field and microgravity conditions. Journal of Quantitative Spectroscopy & Radiative Transfer, 2004, 88(1-3): 327–343
https://doi.org/10.1016/j.jqsrt.2003.12.035
|
| 25 |
Savenkov S N, Grygoruk V I, Muttiah R S, Yushtin K E, Oberemok Ye A, Yakubchak V V. Effective dichroism in forward scattering by inhomogeneous birefringent medium. Journal of Quantitative Spectroscopy & Radiative Transfer, 2009, 110(1-2): 30–42
https://doi.org/10.1016/j.jqsrt.2008.09.002
|
| 26 |
Ossikovski R. Analysis of depolarizing Mueller matrices through a symmetric decomposition. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 2009, 26(5): 1109–1118
https://doi.org/10.1364/JOSAA.26.001109
pmid: 19412227
|
| 27 |
Williams M W. Depolarization and cross polarization in ellipsometry of rough surfaces. Applied Optics, 1986, 25(20): 3616–3622
https://doi.org/10.1364/AO.25.003616
pmid: 18235668
|
| 28 |
Lu S Y, Chipman R A. Interpretation of Mueller matrices based on polar decomposition. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 1996, 13(5): 1106–1113
https://doi.org/10.1364/JOSAA.13.001106
|
| 29 |
Savenkov S N. Optimization and structuring of the instrument matrix for polarimetric measurements. Optical Engineering (Redondo Beach, Calif.), 2002, 41(5): 965–972
https://doi.org/10.1117/1.1467361
|
| 30 |
Gil J J, San José I. Reduced form of a Mueller matrix Journal of Modern Optics, 2016, 63(16): 1579–1583
https://doi.org/10.1080/09500340.2016.1162337
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|