Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2017, Vol. 10 Issue (4) : 363-369    https://doi.org/10.1007/s12200-017-0728-2
RESEARCH ARTICLE
Diluted magnetic characteristics of Ni-doped AlN films via ion implantation
Chong ZHAO, Qixin WAN, Jiangnan DAI(), Jun ZHANG, Feng WU, Shuai WANG, Hanling LONG, Jingwen CHEN, Cheng CHEN, Changqing CHEN
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(268 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The structural and magnetic properties, as well as the mechanism of magnetization, of Ni-implanted AlN films were studied. AlN was deposited on Al2O3 substrates by metalorganic chemical vapor deposition (MOCVD), and subsequently Ni ions were implanted into the AlN films by Metal Vapor Arc (MEVVA) sources at an energy of 100 keV for 3 h. The films were annealed at 900°C for 1 h in the furnace in order to transfer the Ni ions from interstitial sites to substitutional sites in AlN, thus activating the Ni3+ ions. Characterizations were performed in situ using X-ray diffraction (XRD), X-ray photoemission spectroscopy (XPS), and vibrating sample magnetometry (VSM), which showed that the films have a wurtzite structure without the formation of a secondary phase after implanting and annealing. Ni ions were successfully implanted into substitutional sites of AlN films, and the chemical bonding states are Ni-N. The apparent hysteresis loops prove that the films exhibited magnetism at 300 K. The room temperature (RT) saturation magnetization moment (Ms) and coercivity (Hc) values were about 0.36 emu/g and 35.29 Oe, respectively. From the first-principles calculation, a total magnetic moment of 2.99 μB per supercell is expected, and the local magnetic moment of a NiN4 tetrahedron, 2.45 μB, makes the primary contribution. The doped Ni atom hybridizes with four nearby N atoms in a NiN4 tetrahedron; then the electrons of the N atoms are spin-polarized and couple with the electrons of the Ni atom with strong magnetization, which results in magnetism. Therefore, the p-d exchange mechanism between Ni-3d and N-2p can be the origin of the magnetism. It is expected that these room temperature, ferromagnetic, Ni-doped AlN films will have many potential applications as diluted magnetic semiconductors.

Keywords III-V nitrides      metalorganic chemical vapor deposition (MOCVD)      diluted magnetic semiconductors      first-principles     
Corresponding Author(s): Jiangnan DAI   
Just Accepted Date: 10 August 2017   Online First Date: 08 September 2017    Issue Date: 21 December 2017
 Cite this article:   
Chong ZHAO,Qixin WAN,Jiangnan DAI, et al. Diluted magnetic characteristics of Ni-doped AlN films via ion implantation[J]. Front. Optoelectron., 2017, 10(4): 363-369.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-017-0728-2
https://academic.hep.com.cn/foe/EN/Y2017/V10/I4/363
Fig.1  XRD spectra for the as grown AlN film, Ni-implanted AlN film before annealing and Ni-implanted AlN film after annealing
Fig.2  (a) Al-2p and (b) Ni-2p high-resolution XPS spectra of Sample b before and after annealing
Fig.3  Magnetization versus magnetic field (M-H) loops for Sample b before and after annealing
Fig.4  Total DOS of (a) Al16N16 and (b) Al15NiN16. Fermi level is set to zero. Positive (negative) values correspond to the majority (minority) spin
Fig.5  Spin DOS of (a) Al-3d, (b) Ni-3d and (c) N-2p of AlN. Fermi level is set to zero. Positive (negative) values correspond to the majority (minority) spin
1 Ohno H, Shen A, Matsukura F, Oiwa A, Endo A, Katsumoto S, Iye Y. (Ga,Mn)As: a new diluted magnetic semiconductor based on GaAs. Applied Physics Letters, 1996, 69(3): 363–365
https://doi.org/10.1063/1.118061
2 Philip J, Theodoropoulou N, Berera G, Moodera J S, Satpati B. High-temperature ferromagnetism in manganese-doped indium-tin oxide films. Applied Physics Letters, 2004, 85(5): 777–779
https://doi.org/10.1063/1.1773617
3 Litvinov V I, Dugaev V K. Ferromagnetism in magnetically doped III–V semiconductors. Physical Review Letters, 2001, 86(24): 5593–5596
https://doi.org/10.1103/PhysRevLett.86.5593
4 Rode K, Anane A, Mattana R, Contour J P, Durand O, LeBourgeois R. Magnetic semiconductors based on cobalt substituted ZnO. Journal of Applied Physics, 2003, 93(10): 7676–7678
https://doi.org/10.1063/1.1556115
5 Vetter U, Zenneck J, Hofsass H. Intense ultraviolet cathodoluminescence at 318 nm from Gd3+-doped AlN. Applied Physics Letters, 2003, 83(11): 2145–2147
https://doi.org/10.1063/1.1605237
6 Han S Y, Hite J, Thaler G T, Frazier R M, Abernathy C R, Pearton S J, Choi H K, Lee W O, Park Y D, Zavada J M, Gwilliam R.Effect of Gd implantation on the structural and magnetic properties of GaN and AlN. Applied Physics Letters, 2006, 88(4): 042102
7 Luo J T, Li Y Z, Kang X Y, Zeng F, Pan F, Fan P, Jiang Z, Wang Y. Enhancement of room temperature ferromagnetism in Cu-doped AlN thin film by defect engineering. Journal of Alloys and Compounds, 2014, 586(4): 469–474
https://doi.org/10.1016/j.jallcom.2013.09.214
8 Xiong J, Guo P, Cai Y, Stradel B, Brumek J, He Y, Gua H. Structural, magnetic and nanomechanical properties in Ni-doped AlN films. Journal of Alloys and Compounds, 2014, 606: 55–60
https://doi.org/10.1016/j.jallcom.2014.03.178
9 Nepal N, Bedair S M, Elmasry N A, Lee D S, Steckl A J, Zavada J M. Correlation between compositional fluctuation and magnetic properties of Tm-doped AlGaN alloys. Applied Physics Letters, 2007, 91(22): 222503
https://doi.org/10.1063/1.2817741
10 Shi C, Qin H, Zhang Y, Hu J F, Ju L. Magnetic properties of transition metal doped AlN nanosheet: first-principle studies. Journal of Applied Physics, 2014, 115(5): 053907
https://doi.org/10.1063/1.4864262
11 Frazier R M, Stapleton J, Thaler G T, Abernathy C R, Pearton S J, Rairigh R, Kelly J, Hebard A F, Nakarmi M L, Nam K B, Lin J Y, Jiang H X, Zavada J M, Wilson R G. Properties of Co-, Cr-, or Mn-implanted AlN. Journal of Applied Physics, 2003, 94(3): 1592–1596
https://doi.org/10.1063/1.1586987
12 Wu R Q, Peng G W, Liu L, Feng Y P, Huang Z G, Wu Q Y. Ferromagnetism in Mg-doped AlN from ab initio study. Applied Physics Letters, 2006, 89(14): 142501 
https://doi.org/10.1063/1.2358818
13 Shi L J, Zhu L F, Zhao Y H, Liu B G. Nitrogen defects and ferromagnetism in Cr-doped dilute magnetic semiconductor AlN from first principles. Physical Review B: Condensed Matter, 2008, 78(19): 195206
https://doi.org/ 10.1103/PhysRevB.78.195206
14 Ran F Y, Subramanian M, Tanemura M, Hayashi Y, Hihara T. Ferromagnetism in Cu-doped AlN films. Applied Physics Letters, 2009, 95(11): 112111
https://doi.org/10.1063/1.3232238
15 Xiong J, Guo P, Guo F, Sun X L, Gu H S. Room temperature ferromagnetism in Mg-doped AlN semiconductor films. Materials Letters, 2014, 117(117): 276–278
https://doi.org/10.1016/j.matlet.2013.12.018
16 Pan D, Jian J K, Ablat A, Li J, Sun Y F, Wu R. Structure and magnetic properties of Ni-doped AlN films. Journal of Applied Physics, 2012, 112(5): 053911 
https://doi.org/10.1063/1.4749408
17 Sato K, Katayama Y H. Ferromagnetism in a transition metal atom doped ZnO. Physica E, Low-Dimensional Systems and Nanostructures, 2001, 10(1–3): 251–255
https://doi.org/10.1016/S1386-9477(01)00093-5
18 Wang Q, Sun Q, Jena P, Kawazoe Y. Carrier-mediated ferromagnetism in N codoped (Zn, Mn) O thin films. Physical Review B: Condensed Matter and Materials Physics, 2004, 70(5): 052408
https://doi.org/10.1103/PhysRevB.70.052408
19 Pan D, Jian J K, Sun Y F, Wu F. Structure and magnetic characteristics of Si-doped AlN films. Journal of Alloys and Compounds, 2012, 519(7): 41–46
https://doi.org/10.1016/j.jallcom.2011.12.015
20 Wagner C D, Riggs W M, Davis L E, Moulder J F, Muilenberg G E. Handbook of X-ray Photoelectron Spectroscopy. Minnesota: Perkin-Elmer Corporation Press, 1979, 80–81
21 Stainton M P. Syringe procedure for transfer of nanogram quantities of mercury vapor for flameless atomic absorption spectrophotometry. Analytical Chemistry, 1971, 43(4): 625–627 
https://doi.org/10.1021/ac60299a036
22 Cho J H, Hwang T J, Joh Y G, Kim E C, Kim D G H, Lee K J, Park H W, Ri H C, Kim J P, Cho C R. Room-temperature ferromagnetism in highly-resistive Ni-doped TiO2. Applied Physics Letters, 2006, 88(9): 092505
https://doi.org/10.1063/1.2179607
[1] Qixin WAN, Hao LIN, Shuai WANG, Jiangnan DAI, Changqing CHEN. Ripening-resistance of Pd on TiO2(110) from first-principles kinetics[J]. Front. Optoelectron., 2020, 13(4): 409-417.
[2] Ying Li, Shiwei Feng, Ji Yang, Yuezong Zhang, Xuesong Xie, Changzhi Lü, Yicheng Lu. Photoresponse of ZnO single crystal films[J]. Front Optoelec Chin, 2008, 1(3-4): 309-312.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed