Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2017, Vol. 10 Issue (4) : 395-401    https://doi.org/10.1007/s12200-017-0735-3
RESEARCH ARTICLE
Synthesis of porous TiO2 nanowires and their photocatalytic properties
Yonglun TANG1, Haibo REN2, Jiarui HUANG2()
1. Department of Fundamental Course Teaching, Anhui Technical College of Industry and Economy, Hefei 230051, China
2. College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
 Download: PDF(404 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Porous titanium dioxide (TiO2) nanowires were synthesized via a surfactant-free hydrothermal method followed by acid-washing process and calcination. The structures and morphologies of products were characterized by field emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM), X-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) N2 adsorption-desorption analyses. The analysis of FESEM suggested the precursor was composed of a vast of uniform nanostructures like wires. The nanowire-like precursor was transformed into the porous nanowire after acid-treatment and calcination at 500°C for 2 h in air. The surface area of as-synthesized TiO2 nanowires calculated by BET is 86.4 m2/g. Furthermore, the photocatalytic properties of synthesized porous TiO2 nanowires were evaluated through the degradation of methylene blue (MB) and Rhodamine B (RhB). The results clearly suggested that the as-prepared porous TiO2 nanowires showed remarkable photocatalytic performance on the degradation of RhB and MB due to their small size of nanocrystallites and the porous naonstructure.

Keywords titanium dioxide (TiO2)      nanowire      porous      photocatalyst      photocatalytic performance     
Corresponding Author(s): Jiarui HUANG   
Just Accepted Date: 25 August 2017   Online First Date: 28 September 2017    Issue Date: 21 December 2017
 Cite this article:   
Yonglun TANG,Haibo REN,Jiarui HUANG. Synthesis of porous TiO2 nanowires and their photocatalytic properties[J]. Front. Optoelectron., 2017, 10(4): 395-401.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-017-0735-3
https://academic.hep.com.cn/foe/EN/Y2017/V10/I4/395
Fig.1  XRD patterns of (a) Na2Ti3O7 precursor and (b) TiO2 product at 500°C for 2 h
Fig.2  Representative FESEM images of (a, b) the Na2Ti3O7 nanowire precursor and (c, d) porous TiO2 nanowires. (e) Typical TEM images and (f) HRTEM image of the porous TiO2 nanowires. The inset is the corresponding TEM image at high magnification
Fig.3  N2 adsorption-desorption isotherm and BJH pore size distribution plots (inset) of the porous TiO2 nanowires. STP: standard temperature and pressure
Fig.4  Change of absorbance spectra of (a) RhB, (b) MB in solution with the concentration of 20 mg/L with porous TiO2 nanowires under UV light irradiation. The insets are plots of photodegradation rate vs different irradiation time of RhB and MB under UV light irradiation with or without catalysts, where Ct is the concentration of dyes and C0 is the initial concentration
Fig.5  Recycling results of the catalyst in the photodegradation of (a) MB, (b) RhB, in which Ct is the concentration of MB or RhB and C0 is the initial concentration
materialsspecific surface area/(m2·g-1pollutantsrate of degradationRef.
commercial TiO2 powders7.81MB
RhB
48.2% (70 min)
49.1% (70 min)
[14]
corous TiO2 nanospheres26.1MB
RhB
90.2% (70 min)
98.1% (70 min)
[14]
anatase nano-TiO275.0MB
RhB
90.3% (60 min)
86.0% (60 min)
[21]
hierarchical TiO2 nanoflowers35.8RhB97.8% (120 min)[22]
porous TiO2 nanowires86.4MB
RhB
97.98% (56 min)
98.76% (49 min)
this work
Tab.1  Comparisons of the photocatalytic performances of TiO2 materials with different morphologies
1 Khan S B, Hou M J, Shuang S, Zhang Z J. Morphological influence of TiO2 nanostructures (nanozigzag, nanohelics and nanorod) on photocatalytic degradation of organic dyes. Applied Surface Science, 2017, 400: 184–193 
https://doi.org/10.1016/j.apsusc.2016.12.172
2 Edy R, Zhao Y T, Huang G S, Shi J J, Zhang J, Solovev A A, Mei Y F. TiO2 nanosheets synthesized by atomic layer deposition for photocatalysis. Progress in Natural Science-Materials International, 2016, 26(5): 493–497
https://doi.org/10.1016/j.pnsc.2016.08.010
3 Cheng G, Xu F F, Xiong J Y, Tian F, Ding J, Stadler F J, Chen R. Enhanced adsorption and photocatalysis capability of generally synthesized TiO2-carbon materials hybrids. Advanced Powder Technology, 2016, 27(5): 1949–1962
https://doi.org/10.1016/j.apt.2016.06.026
4 Liu W G, Xu Y M, Zhou W, Zhang X F. A facile synthesis of hierarchically porous TiO2 microspheres with carbonaceous species for visible-light photocatalysis.  Journal of Materials Science & Technology, 2016, 33(1): 39–46
5 Zhang J Y, Li C X, Wang D Y, Zhang C, Liang L, Zhou X. The effect of different TiO2 nanoparticles on the release and transformation of mercury in sediment. Journal of Soils and Sediments, 2017, 17(2): 536–542
https://doi.org/10.1007/s11368-016-1580-5
6 Gaikwad M A, Mane A A, Desai S P, Moholkar A V. Template-free TiO2 photoanodes for dye-sensitized solar cell via modified chemical route. Journal of Colloid and Interface Science, 2017, 488: 269–276
https://doi.org/10.1016/j.jcis.2016.10.073 pmid: 27837717
7 Qiu Y, Ouyang F. Fabrication of TiO2 hierarchical architecture assembled by nanowires with anatase/TiO2(B) phase-junctions for efficient photocatalytic hydrogen production. Applied Surface Science, 2017, 403: 691–698 
https://doi.org/10.1016/j.apsusc.2017.01.255
8 Ma L Q, Xu W C, Zhu S L, Cui Z D, Yang X J, Inoue A. Anatase TiO2 hierarchical nanospheres with enhanced photocatalytic activity for degrading methyl orange. Materials Chemistry and Physics, 2016, 170: 186–192
https://doi.org/10.1016/j.matchemphys.2015.12.038
9 Goriparti S, Miele E, Prato M, Scarpellini A, Marras S, Monaco S, Toma A, Messina G C, Alabastri A, De Angelis F. Direct synthesis of carbon-doped TiO2-bronze nanowires as anode materials for high performance lithium-ion batteries. ACS Applied Materials & Interfaces,  2015, 7(45): 25139–25146
10 Li X L, Bassi P S, Boix P P, Fang Y N, Wong L H. Revealing the role of TiO2 surface treatment of hematite nanorods photoanodes for solar water splitting. ACS Applied Materials & Interfaces,  2015, 7(31): 16960–16966
11 Praveen Kumar D, Lakshmana Reddy N, Karthikeyan M, Chinnaiah N, Bramhaiah V, Durga Kumari V, Shankar M V. Synergistic effect of nanocavities in anatase TiO2 nanobelts for photocatalytic degradation of methyl orange dye in aqueous solution. Journal of Colloid and Interface Science, 2016, 477: 201–208
https://doi.org/10.1016/j.jcis.2016.05.014 pmid: 27289430
12 Hejazi S, Nguyen N T, Mazare A, Schmuki P. Aminated TiO2 nanotubes as a photoelectrochemical water splitting photoanode. Catalysis Today, 2017, 281: 189–197
https://doi.org/10.1016/j.cattod.2016.07.009
13 Yu W J, Liu Y M, Cheng N, Cai B, Kondamareddy K K, Kong S, Xu S, Liu W, Zhao X Z. Ultra-thin anatase TiO2 nanosheets with admirable structural stability for advanced reversible lithium storage and cycling performance. Electrochimica Acta, 2016, 220: 398–404
https://doi.org/10.1016/j.electacta.2016.10.125
14 Huang J R, Ren H B, Liu X S, Li X X, Shim J J. Facile synthesis of porous TiO2 nanospheres and their photocatalytic properties. Superlattices and Microstructures, 2015, 81: 16–25
https://doi.org/10.1016/j.spmi.2015.01.012
15 Ma J, Ren W H, Zhao J, Yang H L. Growth of TiO2 nanoflowers photoanode for dye-sensitized solar cells. Journal of Alloys and Compounds, 2017, 692: 1004–1009
https://doi.org/10.1016/j.jallcom.2016.09.134
16 Lai L L, Wen W, Fu B, Qian X Y, Liu J B, Wu J M. Surface roughening and top opening of single crystalline TiO2 nanowires for enhanced photocatalytic activity. Materials & Design, 2016, 108: 581–589
https://doi.org/10.1016/j.matdes.2016.07.020
17 Yao Y C, Dai X R, Hu X Y, Huang S Z, Jin Z. Synthesis of Ag-decorated porous TiO2 nanowires through a sunlight induced reduction method and its enhanced photocatalytic activity. Applied Surface Science, 2016, 387: 469–476
https://doi.org/10.1016/j.apsusc.2016.06.130
18 Bakar S A, Byzynski G, Ribeiro C. Synergistic effect on the photocatalytic activity of N-doped TiO2 nanorods synthesised by novel route with exposed (110) facet. Journal of Alloys and Compounds, 2016, 666: 38–49 
https://doi.org/10.1016/j.jallcom.2016.01.112
19 Myung S T, Takahashi N, Komaba S, Yoon C S, Sun Y K, Amine K, Yashiro H. Nanostructured TiO2 and its application in lithium-ion storage. Advanced Functional Materials, 2011, 21(17): 3231–3241
https://doi.org/10.1002/adfm.201002724
20 Tsai C C, Teng H S. Structural features of nanotubes synthesized from NaOH treatment on TiO2 with different post-treatments. Chemistry of Materials, 2006, 18(2): 367–373
https://doi.org/10.1021/cm0518527
21 Zhang J, Wu B, Huang L H, Liu P L, Wang X Y, Lu Z D, Xu G L, Zhang E P, Wang H B, Kong Z, Xi J, Ji Z. Anatase nano-TiO2 with exposed curved surface for high photocatalytic activity. Journal of Alloys and Compounds, 2016, 661: 441–447
https://doi.org/10.1016/j.jallcom.2015.11.225
22 Fan Z H, Meng F M, Zhang M, Wu Z Y, Sun Z Q, Li A X. Solvothermal synthesis of hierarchical TiO2 nanostructures with tunable morphology and enhanced photocatalytic activity. Applied Surface Science, 2016, 360: 298–305
https://doi.org/10.1016/j.apsusc.2015.11.021
[1] Zidong ZHANG, Juehan YANG, Fuhong MEI, Guozhen SHEN. Longitudinal twinning α-In2Se3 nanowires for UV-visible-NIR photodetectors with high sensitivity[J]. Front. Optoelectron., 2018, 11(3): 245-255.
[2] Yanxiong E,Zhibiao HAO,Jiadong YU,Chao WU,Lai WANG,Bing XIONG,Jian WANG,Yanjun HAN,Changzheng SUN,Yi LUO. Size-dependent optical properties of InGaN quantum dots in GaN nanowires grown by MBE[J]. Front. Optoelectron., 2016, 9(2): 318-322.
[3] Zhiqian WU,Yue SHEN,Xiaoqiang LI,Qing YANG,Shisheng LIN. Green light-emitting diode based on graphene-ZnO nanowire van der Waals heterostructure[J]. Front. Optoelectron., 2016, 9(1): 87-92.
[4] Heng LI,Wei JING,Dapeng YU,Qing ZHAO. Micro-scale hierarchical photoanode for quantum-dot-sensitized solar cells based on TiO2 nanowires[J]. Front. Optoelectron., 2016, 9(1): 53-59.
[5] Xiaowei GUAN,Hao WU,Daoxin DAI. Silicon hybrid nanoplasmonics for ultra-dense photonic integration[J]. Front. Optoelectron., 2014, 7(3): 300-319.
[6] Heng WANG, Peng XIANG, Mi XU, Guanghui LIU, Xiong LI, Zhiliang KU, Yaoguang RONG, Linfeng LIU, Min HU, Ying YANG, Hongwei HAN. High efficiency monobasal solid-state dye-sensitized solar cell with mesoporous TiO2 beads as photoanode[J]. Front Optoelec, 2013, 6(4): 413-417.
[7] Weisong YANG, Yipei WANG, Yaoguang MA, Chao MENG, Xiaoqin WU, Qing YANG. Lasing characteristics of curved semiconductor nanowires[J]. Front Optoelec, 2013, 6(4): 448-451.
[8] Xiaojing Lu, Yin PENG, Zhengzheng HAN. Heterogeneous photocatalytic treatment of wastewater in ultraviolet light irradiation—photocatalyst Bi2WO6 microsphere with high repeatability[J]. Front Optoelec, 2012, 5(4): 439-444.
[9] Bin WANG, Jianjun LAI, Erjing ZHAO, Haoming HU, Sihai CHEN. Research on VOx uncooled infrared bolometer based on porous silicon[J]. Front Optoelec, 2012, 5(3): 292-297.
[10] Yaoguang MA, Limin TONG. Optically pumped semiconductor nanowire lasers[J]. Front Optoelec, 2012, 5(3): 239-247.
[11] Cunxi CHENG, Jihuai WU, Yaoming XIAO, Yuan CHEN, Haijun YU, Ziying TANG, Jianming LIN, Miaoliang HUANG. Preparation of titanium dioxide-double-walled carbon nanotubes and its application in flexible dye-sensitized solar cells[J]. Front Optoelec, 2012, 5(2): 224-230.
[12] Yueyin SHAO, Yongqian WEI, Zhenghua WANG. Surface-enhanced Raman scattering of sulfate ion based on Ag/Si nanostructure[J]. Front Optoelec Chin, 2011, 4(4): 378-381.
[13] Davinder RATHEE, Sandeep K ARYA, Mukesh KUMAR. Analysis of TiO2 for microelectronic applications: effect of deposition methods on their electrical properties[J]. Front Optoelec Chin, 2011, 4(4): 349-358.
[14] Yueyin SHAO, Yongqian WEI, Zhenghua WANG. Synthesis of silicon nanowires supported Ag nanoparticles and their catalytic activity in photo-degradation of Rhodamine B[J]. Front Optoelec Chin, 2011, 4(2): 171-175.
[15] Zhenghua WANG, Shiyu ZHU. Rapid growth of t-Se nanowires in acetone at room temperature and their photoelectrical properties[J]. Front Optoelec Chin, 2011, 4(2): 188-194.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed