Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2017, Vol. 10 Issue (3) : 323-328    https://doi.org/10.1007/s12200-017-0736-2
RESEARCH ARTICLE
Medium chromatic dispersion calculation and correction in spectral-domain optical coherence tomography
Vasily A. MATKIVSKY(), Alexander A. MOISEEV, Sergey Yu. KSENOFONTOV, Irina V. KASATKINA, Grigory V. GELIKONOV, Dmitry V. SHABANOV, Pavel A. SHILYAGIN, Valentine M. GELIKONOV
Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod 603950, Russia
 Download: PDF(234 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A method for determining and correcting distortions in spectral-domain optical coherence tomography images caused by medium dispersion was developed. The method is based on analysis of the phase distribution of the interference signal recorded by an optical coherence tomography device using an iterative approach to find and compensate for the effect of a medium’s chromatic dispersion on point-spread function broadening in optical coherence tomography. This enables compensation of the impact of medium dispersion to an accuracy of a fraction of a radian (units of percent) while avoiding additional measurements and solution of the optimization problem. The robustness of the method was demonstrated experimentally using model and biological objects.

Keywords optical coherence tomography (OCT)      dispersion      image resolution restoration     
Corresponding Author(s): Vasily A. MATKIVSKY   
Just Accepted Date: 17 August 2017   Online First Date: 08 September 2017    Issue Date: 26 September 2017
 Cite this article:   
Vasily A. MATKIVSKY,Alexander A. MOISEEV,Sergey Yu. KSENOFONTOV, et al. Medium chromatic dispersion calculation and correction in spectral-domain optical coherence tomography[J]. Front. Optoelectron., 2017, 10(3): 323-328.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-017-0736-2
https://academic.hep.com.cn/foe/EN/Y2017/V10/I3/323
Fig.1  Experimental verification of the possibility of dispersive profile reconstruction. (a) Initial OCT image of human finger skin; (b) reconstructed nonlinear profile of medium dispersion spectrum (solid curve) and its numerical model based on Sellmeier’s equation [28] (dashed curve)
Fig.2  Human volunteer retina OCT image. (a) Initial image in the case of dispersion-induced distortion; (b) restored image; (c) and (d) magnified fragments of (a) and (b) images, respectively
  
  
  
  
  
  
  
  
1 W Drexler, J G Fujimoto. Optical Coherence Tomography Technology and Applications . Berlin: Springer, 2008, 1357
2 C A Puliafito, M R Hee, J S Schuman, J G Fujimoto. Optical Coherence Tomography of Ocular Diseases. Thorofare, NJ: Slack Inc., 1996, 376
3 V Gupta, A Gupta, M R Dogra. Atlas of Optical Coherence Tomography of Macular Diseases. Boca Raton: Taylor & Francis, 2004
4 V Y Zaitsev, I A Vitkin, L A Matveev, V M Gelikonov, A L Matveyev, G V Gelikonov. Recent trends in multimodal optical coherence tomography II. The correlation-stability approach in OCT elastography and methods for visualization of microcirculation. Radiophysics and Quantum Electronics, 2014, 57(3): 210–225
https://doi.org/10.1007/s11141-014-9505-x
5 A L Loduca, C Zhang, R Zelkha, M Shahidi. Thickness mapping of retinal layers by spectral-domain optical coherence tomography. American Journal of Ophthalmology, 2010, 150(6): 849–855
https://doi.org/10.1016/j.ajo.2010.06.034 pmid: 20951975
6 S J Chiu, X T Li, P Nicholas, C A Toth, J A Izatt, S Farsiu. Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation. Optics Express, 2010, 18(18): 19413–19428
https://doi.org/10.1364/OE.18.019413 pmid: 20940837
7 A F Fercher, C K Hitzenberger, M Sticker, R Zawadzki, B Karamata, T Lasser. Dispersion compensation for optical coherence tomography depth-scan signals by a numerical technique. Optics Communications, 2002, 204(1–6): 67–74
https://doi.org/10.1016/S0030-4018(02)01137-9
8 N Lippok, S Coen, P Nielsen, F Vanholsbeeck. Dispersion compensation in Fourier domain optical coherence tomography using the fractional Fourier transform. Optics Express, 2012, 20(21): 23398–23413
https://doi.org/10.1364/OE.20.023398 pmid: 23188304
9 W Choi, B Baumann, E A Swanson, J G Fujimoto. Extracting and compensating dispersion mismatch in ultrahigh-resolution Fourier domain OCT imaging of the retina. Optics Express, 2012, 20(23): 25357–25368
https://doi.org/10.1364/OE.20.025357 pmid: 23187353
10 X Wu, W Gao. Dispersion analysis in micron resolution spectral domain optical coherence tomography. Journal of the Optical Society of America. B, Optical Physics, 2017, 34(1): 169–177
https://doi.org/10.1364/JOSAB.34.000169
11 V V Lychagov, V P Ryabukho. Chromatic dispersion effects in ultra-low coherence interferometry. Quantum Electronics, 2015, 45(6): 556–560
https://doi.org/10.1070/QE2015v045n06ABEH015616
12 X Yu, X Liu, S Chen, Y Luo, X Wang, L Liu. High-resolution extended source optical coherence tomography. Optics Express, 2015, 23(20): 26399–26413
https://doi.org/10.1364/OE.23.026399 pmid: 26480153
13 D Xu, Y Huang, J U Kang. Graphics processing unit-accelerated real-time compressive sensing spectral domain optical coherence tomography . In: Proceedings of SPIE. 2015, 93301B
14 H Bian, W Gao. Wavelet transform-based method of compensating dispersion for high resolution imaging in SDOCT. In: Proceedings of SPIE. 2014, 92360X
15 L Pan, X Wang, Z Li, X Zhang, Y Bu, N Nan, Y Chen, X Wang, F Dai. Depth-dependent dispersion compensation for full-depth OCT image. Optics Express, 2017, 25(9): 10345–10354
https://doi.org/10.1364/OE.25.010345
16 B Wang, Z Jiang, Y Hu, Z. Wang A segmental dispersion compensation method to improve axial resolution of specified layer in FD-OCT. In: Proceedings of SPIE, Optical Measurement Technology and Instrumentation. 2016, 101553L
17 M Okano, R Okamoto, A Tanaka, S Ishida, N Nishizawa, S Takeuchi. Dispersion cancellation in high-resolution two-photon interference. Physical Review A, 2013, 88(4): 043845
https://doi.org/10.1103/PhysRevA.88.043845
18 T Shirai. Modifications of intensity-interferometric spectral-domain optical coherence tomography with dispersion cancellation . Journal of Optics, 2015, 17(4): 045605
https://doi.org/10.1088/2040-8978/17/4/045605
19 C Photiou, E Bousi, I Zouvani, C Pitris. Using speckle to measure tissue dispersion in optical coherence tomography. Biomedical Optics Express, 2017, 8(5): 2528–2535
https://doi.org/10.1364/BOE.8.002528
20 C. Photiou, C. Pitris Tissue dispersion measurement techniques using optical coherence tomography. In: Proceedings of SPIE, Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXI. 2017, 100532W
21 K Banaszek, A S Radunsky, I A Walmsley. Blind dispersion compensation for optical coherence tomography. In: Proceedings of Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, San Francisco, California. 2004, CWJ6
22 K Banaszek, A S Radunsky, I A Walmsley. Blind dispersion compensation for optical coherence tomography. Optics Communications, 2007, 269(1): 152–155
https://doi.org/10.1016/j.optcom.2006.07.050
23 V A Matkivsky, A A Moiseev, G V Gelikonov, D V Shabanov, P A Shilyagin, V M Gelikonov. Correction of aberrations in digital holography using the phase gradient autofocus technique. Laser Physics Letters, 2016, 13(3): 035601
https://doi.org/10.1088/1612-2011/13/3/035601
24 R A Leitgeb, M Wojtkowski. Complex and coherence noise free Fourier domain optical coherence tomography. In: Drexler W, Fujimoto J G, eds. Optical Coherence Tomography: Technology and Applications. Berlin: Springer, 2008, 177–207
25 V M Gelikonov, G V Gelikonov, I V Kasatkina, D A Terpelov, P A Shilyagin. Coherent noise compensation in spectral-domain optical coherence tomography. Optics and Spectroscopy, 2009, 106(6): 895–900
https://doi.org/10.1134/S0030400X09060174
26 A F Fercher. Optical coherence tomography. Journal of Biomedical Optics, 1996, 1(2): 157–173
https://doi.org/10.1117/12.231361 pmid: 23014682
27 W A Welge, J K Barton. Expanding functionality of commercial optical coherence tomography systems by integrating a custom endoscope. PLoS One, 2015, 10(9): e0139396
https://doi.org/10.1371/journal.pone.0139396 pmid: 26418811
28 Schott Optical glass datasheet (Electronic document)
29 V K Batovrin, I A Garmash, V M Gelikonov, G V Gelikonov, A V Lyubarskiǐ, A G Plyavenek, S A Safin, A T Semenov, V R Shidlovskiǐ, M V Shramenko, S D Yakubovich. Superluminescent diodes based on single-quantum-well (GaAl)As heterostructures. Quantum Electronics, 1996, 26(2): 109–114
https://doi.org/10.1070/QE1996v026n02ABEH000603
30 L A Matveev, V Y Zaitsev, G V Gelikonov, A L Matveyev, A A Moiseev, S Y Ksenofontov, V M Gelikonov, M A Sirotkina, N D Gladkova, V Demidov, A Vitkin. Hybrid M-mode-like OCT imaging of three-dimensional microvasculature in vivo using reference-free processing of complex valued B-scans. Optics Letters, 2015, 40(7): 1472–1475
https://doi.org/10.1364/OL.40.001472 pmid: 25831362
[1] Md. Mostafa FARUK, Nazifa Tabassum KHAN, Shovasis Kumar BISWAS. Highly nonlinear bored core hexagonal photonic crystal fiber (BC-HPCF) with ultra-high negative dispersion for fiber optic transmission system[J]. Front. Optoelectron., 2020, 13(4): 433-440.
[2] Sergey Yu. KSENOFONTOV, Pavel A. SHILYAGIN, Dmitry A. TERPELOV, Valentin M. GELIKONOV, Grigory V. GELIKONOV. Numerical method for axial motion artifact correction in retinal spectral-domain optical coherence tomography[J]. Front. Optoelectron., 2020, 13(4): 393-401.
[3] Jonas OGIEN, Anthony DAURES, Maxime CAZALAS, Jean-Luc PERROT, Arnaud DUBOIS. Line-field confocal optical coherence tomography for three-dimensional skin imaging[J]. Front. Optoelectron., 2020, 13(4): 381-392.
[4] Rekha SAHA, Md. Mahbub HOSSAIN, Md. Ekhlasur RAHAMAN, Himadri Shekhar MONDAL. Design and analysis of high birefringence and nonlinearity with small confinement loss photonic crystal fiber[J]. Front. Optoelectron., 2019, 12(2): 165-173.
[5] Chuan WANG,Xiaoying LIU,Minming ZHANG,Peng ZHOU. Low dispersion broadband integrated double-slot microring resonators optical buffer[J]. Front. Optoelectron., 2016, 9(4): 571-577.
[6] Daojun XUE,Shaohua YU,Qi YANG,Nan CHI,Lan RAO,Xiangjun XIN,Wei LI,Songnian FU,Sheng CUI,Demin LIU,Zhuo LI,Aijun WEN,Chongxiu YU,Xinmei WANG. Frontier research of ultra-high-speed ultra-large-capacity and ultra-long-haul optical transmission[J]. Front. Optoelectron., 2016, 9(2): 123-137.
[7] M. Venkata SUDHAKAR,Y. Mallikarjuna REDDY,B. Prabhakara RAO. Influence of optical filtering on transmission capacity in single mode fiber communications[J]. Front. Optoelectron., 2015, 8(4): 424-430.
[8] Zhihua DING,Yi SHEN,Wen BAO,Peng LI. Fourier domain optical coherence tomography with ultralong depth range[J]. Front. Optoelectron., 2015, 8(2): 163-169.
[9] Zhenyang DING,Chia-Pin LIANG,Yu CHEN. Technology developments and biomedical applications of polarization-sensitive optical coherence tomography[J]. Front. Optoelectron., 2015, 8(2): 128-140.
[10] Jian GAO,Xiao PENG,Peng LI,Zhihua DING,Junle QU,Hanben NIU. Vascular distribution imaging of dorsal skin window chamber in mouse with spectral domain optical coherence tomography[J]. Front. Optoelectron., 2015, 8(2): 170-176.
[11] Zhao WU,Yu YU,Xinliang ZHANG. Chromatic dispersion monitoring using semiconductor optical amplifier[J]. Front. Optoelectron., 2014, 7(3): 399-405.
[12] Yashar E. MONFARED, A. MOJTAHEDINIA, A. R. MALEKI JAVAN, A. R. MONAJATI KASHANI. Highly nonlinear enhanced-core photonic crystal fiber with low dispersion for wavelength conversion based on four-wave mixing[J]. Front Optoelec, 2013, 6(3): 297-302.
[13] Bushra NAWAZ, Rameez ASIF. Impact of polarization mode dispersion and nonlinearities on 2-channel DWDM chaotic communication systems[J]. Front Optoelec, 2013, 6(3): 312-317.
[14] Yousaf KHAN, Xiangjun XIN, Aftab HUSSAIN, Liu BO, Shahryar SHAFIQUE. Generation and transmission of dispersion tolerant 10-Gbps RZ-OOK signal for radio over fiber link[J]. Front Optoelec, 2012, 5(3): 306-310.
[15] Hamidine MAHAMADOU, Xiuhua YUAN, Eljack M. SARAH, Weizheng ZOU. Simulation and comprehensive assessment of single channel RZ-DPSK optical link by dispersion management with channel bit rate beyond 40 Gbits/s[J]. Front Optoelec, 2012, 5(3): 322-329.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed