|
|
|
Medium chromatic dispersion calculation and correction in spectral-domain optical coherence tomography |
Vasily A. MATKIVSKY( ), Alexander A. MOISEEV, Sergey Yu. KSENOFONTOV, Irina V. KASATKINA, Grigory V. GELIKONOV, Dmitry V. SHABANOV, Pavel A. SHILYAGIN, Valentine M. GELIKONOV |
| Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod 603950, Russia |
|
|
|
|
Abstract A method for determining and correcting distortions in spectral-domain optical coherence tomography images caused by medium dispersion was developed. The method is based on analysis of the phase distribution of the interference signal recorded by an optical coherence tomography device using an iterative approach to find and compensate for the effect of a medium’s chromatic dispersion on point-spread function broadening in optical coherence tomography. This enables compensation of the impact of medium dispersion to an accuracy of a fraction of a radian (units of percent) while avoiding additional measurements and solution of the optimization problem. The robustness of the method was demonstrated experimentally using model and biological objects.
|
| Keywords
optical coherence tomography (OCT)
dispersion
image resolution restoration
|
|
Corresponding Author(s):
Vasily A. MATKIVSKY
|
|
Just Accepted Date: 17 August 2017
Online First Date: 08 September 2017
Issue Date: 26 September 2017
|
|
| 1 |
W Drexler, J G Fujimoto. Optical Coherence Tomography Technology and Applications . Berlin: Springer, 2008, 1357
|
| 2 |
C A Puliafito, M R Hee, J S Schuman, J G Fujimoto. Optical Coherence Tomography of Ocular Diseases. Thorofare, NJ: Slack Inc., 1996, 376
|
| 3 |
V Gupta, A Gupta, M R Dogra. Atlas of Optical Coherence Tomography of Macular Diseases. Boca Raton: Taylor & Francis, 2004
|
| 4 |
V Y Zaitsev, I A Vitkin, L A Matveev, V M Gelikonov, A L Matveyev, G V Gelikonov. Recent trends in multimodal optical coherence tomography II. The correlation-stability approach in OCT elastography and methods for visualization of microcirculation. Radiophysics and Quantum Electronics, 2014, 57(3): 210–225
https://doi.org/10.1007/s11141-014-9505-x
|
| 5 |
A L Loduca, C Zhang, R Zelkha, M Shahidi. Thickness mapping of retinal layers by spectral-domain optical coherence tomography. American Journal of Ophthalmology, 2010, 150(6): 849–855
https://doi.org/10.1016/j.ajo.2010.06.034
pmid: 20951975
|
| 6 |
S J Chiu, X T Li, P Nicholas, C A Toth, J A Izatt, S Farsiu. Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation. Optics Express, 2010, 18(18): 19413–19428
https://doi.org/10.1364/OE.18.019413
pmid: 20940837
|
| 7 |
A F Fercher, C K Hitzenberger, M Sticker, R Zawadzki, B Karamata, T Lasser. Dispersion compensation for optical coherence tomography depth-scan signals by a numerical technique. Optics Communications, 2002, 204(1–6): 67–74
https://doi.org/10.1016/S0030-4018(02)01137-9
|
| 8 |
N Lippok, S Coen, P Nielsen, F Vanholsbeeck. Dispersion compensation in Fourier domain optical coherence tomography using the fractional Fourier transform. Optics Express, 2012, 20(21): 23398–23413
https://doi.org/10.1364/OE.20.023398
pmid: 23188304
|
| 9 |
W Choi, B Baumann, E A Swanson, J G Fujimoto. Extracting and compensating dispersion mismatch in ultrahigh-resolution Fourier domain OCT imaging of the retina. Optics Express, 2012, 20(23): 25357–25368
https://doi.org/10.1364/OE.20.025357
pmid: 23187353
|
| 10 |
X Wu, W Gao. Dispersion analysis in micron resolution spectral domain optical coherence tomography. Journal of the Optical Society of America. B, Optical Physics, 2017, 34(1): 169–177
https://doi.org/10.1364/JOSAB.34.000169
|
| 11 |
V V Lychagov, V P Ryabukho. Chromatic dispersion effects in ultra-low coherence interferometry. Quantum Electronics, 2015, 45(6): 556–560
https://doi.org/10.1070/QE2015v045n06ABEH015616
|
| 12 |
X Yu, X Liu, S Chen, Y Luo, X Wang, L Liu. High-resolution extended source optical coherence tomography. Optics Express, 2015, 23(20): 26399–26413
https://doi.org/10.1364/OE.23.026399
pmid: 26480153
|
| 13 |
D Xu, Y Huang, J U Kang. Graphics processing unit-accelerated real-time compressive sensing spectral domain optical coherence tomography . In: Proceedings of SPIE. 2015, 93301B
|
| 14 |
H Bian, W Gao. Wavelet transform-based method of compensating dispersion for high resolution imaging in SDOCT. In: Proceedings of SPIE. 2014, 92360X
|
| 15 |
L Pan, X Wang, Z Li, X Zhang, Y Bu, N Nan, Y Chen, X Wang, F Dai. Depth-dependent dispersion compensation for full-depth OCT image. Optics Express, 2017, 25(9): 10345–10354
https://doi.org/10.1364/OE.25.010345
|
| 16 |
B Wang, Z Jiang, Y Hu, Z. Wang A segmental dispersion compensation method to improve axial resolution of specified layer in FD-OCT. In: Proceedings of SPIE, Optical Measurement Technology and Instrumentation. 2016, 101553L
|
| 17 |
M Okano, R Okamoto, A Tanaka, S Ishida, N Nishizawa, S Takeuchi. Dispersion cancellation in high-resolution two-photon interference. Physical Review A, 2013, 88(4): 043845
https://doi.org/10.1103/PhysRevA.88.043845
|
| 18 |
T Shirai. Modifications of intensity-interferometric spectral-domain optical coherence tomography with dispersion cancellation . Journal of Optics, 2015, 17(4): 045605
https://doi.org/10.1088/2040-8978/17/4/045605
|
| 19 |
C Photiou, E Bousi, I Zouvani, C Pitris. Using speckle to measure tissue dispersion in optical coherence tomography. Biomedical Optics Express, 2017, 8(5): 2528–2535
https://doi.org/10.1364/BOE.8.002528
|
| 20 |
C. Photiou, C. Pitris Tissue dispersion measurement techniques using optical coherence tomography. In: Proceedings of SPIE, Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXI. 2017, 100532W
|
| 21 |
K Banaszek, A S Radunsky, I A Walmsley. Blind dispersion compensation for optical coherence tomography. In: Proceedings of Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, San Francisco, California. 2004, CWJ6
|
| 22 |
K Banaszek, A S Radunsky, I A Walmsley. Blind dispersion compensation for optical coherence tomography. Optics Communications, 2007, 269(1): 152–155
https://doi.org/10.1016/j.optcom.2006.07.050
|
| 23 |
V A Matkivsky, A A Moiseev, G V Gelikonov, D V Shabanov, P A Shilyagin, V M Gelikonov. Correction of aberrations in digital holography using the phase gradient autofocus technique. Laser Physics Letters, 2016, 13(3): 035601
https://doi.org/10.1088/1612-2011/13/3/035601
|
| 24 |
R A Leitgeb, M Wojtkowski. Complex and coherence noise free Fourier domain optical coherence tomography. In: Drexler W, Fujimoto J G, eds. Optical Coherence Tomography: Technology and Applications. Berlin: Springer, 2008, 177–207
|
| 25 |
V M Gelikonov, G V Gelikonov, I V Kasatkina, D A Terpelov, P A Shilyagin. Coherent noise compensation in spectral-domain optical coherence tomography. Optics and Spectroscopy, 2009, 106(6): 895–900
https://doi.org/10.1134/S0030400X09060174
|
| 26 |
A F Fercher. Optical coherence tomography. Journal of Biomedical Optics, 1996, 1(2): 157–173
https://doi.org/10.1117/12.231361
pmid: 23014682
|
| 27 |
W A Welge, J K Barton. Expanding functionality of commercial optical coherence tomography systems by integrating a custom endoscope. PLoS One, 2015, 10(9): e0139396
https://doi.org/10.1371/journal.pone.0139396
pmid: 26418811
|
| 28 |
Schott Optical glass datasheet (Electronic document)
|
| 29 |
V K Batovrin, I A Garmash, V M Gelikonov, G V Gelikonov, A V Lyubarskiǐ, A G Plyavenek, S A Safin, A T Semenov, V R Shidlovskiǐ, M V Shramenko, S D Yakubovich. Superluminescent diodes based on single-quantum-well (GaAl)As heterostructures. Quantum Electronics, 1996, 26(2): 109–114
https://doi.org/10.1070/QE1996v026n02ABEH000603
|
| 30 |
L A Matveev, V Y Zaitsev, G V Gelikonov, A L Matveyev, A A Moiseev, S Y Ksenofontov, V M Gelikonov, M A Sirotkina, N D Gladkova, V Demidov, A Vitkin. Hybrid M-mode-like OCT imaging of three-dimensional microvasculature in vivo using reference-free processing of complex valued B-scans. Optics Letters, 2015, 40(7): 1472–1475
https://doi.org/10.1364/OL.40.001472
pmid: 25831362
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|