Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2017, Vol. 10 Issue (4) : 409-413    https://doi.org/10.1007/s12200-017-0749-x
RESEARCH ARTICLE
Terahertz frequency characterization of anisotropic structure of tourmaline
Weichong TANG, Zili ZHANG, Ke XIAO, Changchun ZHAO, Zhiyuan ZHENG()
School of Science, China University of Geosciences, Beijing 100083, China
 Download: PDF(347 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The absorption coefficient and refractive index of tourmaline in different directions were characterized for the first time using terahertz time-domain spectroscopy. Results show that the absorption and refractive index of terahertz frequency are related to the structure of tourmaline. Absorption along the optical axis direction is more sensitive than that along the vertical direction. This result indicates that the identification and characterization of crystals as well as minerals can be realized by the terahertz method.

Keywords tourmaline      optical properties      terahertz spectroscopy     
Corresponding Author(s): Zhiyuan ZHENG   
Just Accepted Date: 17 November 2017   Online First Date: 12 December 2017    Issue Date: 21 December 2017
 Cite this article:   
Weichong TANG,Zili ZHANG,Ke XIAO, et al. Terahertz frequency characterization of anisotropic structure of tourmaline[J]. Front. Optoelectron., 2017, 10(4): 409-413.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-017-0749-x
https://academic.hep.com.cn/foe/EN/Y2017/V10/I4/409
Fig.1  Schematic diagram of theTHz-TDS setup based on femtosecond-laser driven photoconductive emitterand electro-optic crystal detector (FS-femtosecond, BS-beam splitter,DL-delay line, PM-parabolic mirror)
Fig.2  Schematic diagram of samplecutting. For sample 1, the cutting direction is perpendicular to the C axis; for sample 2, the cutting is alongthe C axis direction
Fig.3  Experimental schematic diagramof (a) sample 1 and (b) sample 2. The Z axis is the direction of propagation of the THz pulse, and the P axis is the polarization direction of theTHz pulse. When rotating the sample 1, the polarization directionof the THz pulse is always perpendicular to the C axis of tourmaline. For sample 2, the polarization directionof the THz pulse is perpendicular to the C axis of tourmaline. When sample 2 is rotated by 90°, the polarizationdirection of the THz pulse is parallel to the C axis
Fig.4  Frequency dependencies of(a) refractive index and (b) absorption coefficient for sample 1.Replica measurements on four different sample orientations with differentangles of 0°, 30°, 60°, 90°
Fig.5  Frequency dependencies ofthe refractive index and absorption coefficient for sample 2. Replicameasurements of (a) ordinary ray and (b) extraordinary ray
Fig.6  Frequency dependencies ofabsorption coefficient for (a) sample 2 and (b) sample 3, respectively.Replica measurements of the ordinary ray and the extraordinary ray;the polarization direction of the terahertz pulse is along the C axis and perpendicular to the C axis
1 Grischkowsky D, Keiding  S, Van Exter M,  Fattinger C. Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors. JOSA B, 1990, 7(10): 2006–2015
https://doi.org/10.1364/JOSAB.7.002006
2 Smith P R, Auston  D H, Nuss  M C. Subpicosecond photoconducting dipole antennas. IEEE Journal of Quantum Electronics, 1988, 24(2): 255–260
https://doi.org/10.1109/3.121
3 Wilke I, Ramanathan  V, LaChance J,  Tamalonis A,  Aldersley M,  Joshi P C,  Ferris J. Characterization of the terahertz frequency optical constants of montmorillonite. Applied Clay Science, 2014, 87(61–65)
4 Kim Y, Yi  M, Kim B G,  Ahn J. Investigation of THz birefringence measurement and calculation in Al2O3 and LiNbO3. Applied Optics, 2011, 50(18): 2906–2910
https://doi.org/10.1364/AO.50.002906 pmid: 21691354
5 Zhao H, Zhao  K, Tian L,  Zhao S Q,  Zhou Q L,  Shi Y L,  Zhao D M,  Zhang C L. Spectrum features of commercial derv fuel oils in the terahertz region. Science China, Physics, Mechanics & Astronomy, 2012, 55(2): 195–198
https://doi.org/10.1007/s11433-011-4597-1
6 Wang W, Yue  W, Yan H,  Zhang C,  Zhao G. Thz time-domain spectroscopy of amino acids. Chinese Science Bulletin, 2005, 50(15): 1561–1565 doi:10.1360/982005-7
7 Woodward R M, Cole  B E, Wallace  V P, Pye  R J, Arnone  D D, Linfield  E H, Pepper  M. Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue. Physics in Medicine and Biology, 2002, 47(21): 3853–3863
https://doi.org/10.1088/0031-9155/47/21/325 pmid: 12452577
8 Shen Y C. Terahertz pulsed spectroscopy and imaging for pharmaceutical applications: a review. International Journal of Pharmaceutics, 2011, 417(1–2): 48–60
https://doi.org/10.1016/j.ijpharm.2011.01.012 pmid: 21237260
9 Shen Y, Lo  T, Taday P,  Cole B E,  Tribe W R,  Kemp M C. Detection and identification of explosives using terahertz pulsed spectroscopic imaging. Applied Physics Letters, 2005, 86(24): 241116
https://doi.org/10.1063/1.1946192
10 Kawase K, Ogawa  Y, Watanabe Y,  Inoue H. Non-destructive terahertz imaging of illicit drugs using spectral fingerprints. Optics Express, 2003, 11(20): 2549–2554
https://doi.org/10.1364/OE.11.002549 pmid: 19471367
11 Bosi F, Andreozzi  G B, Agrosì  G, Scandale E. Fluor-tsilaisite, NaMn3Al6 (Si6O18)(BO3)3(OH)3F, a new tourmaline from San Piero in Campo (Elba, Italy) and new data on tsilaisitic tourmaline from the holotype specimen locality. Mineralogical Magazine, 2015, 79(1): 89–101
https://doi.org/10.1180/minmag.2015.079.1.08
12 Lin S Y, Cai  K Q, Cai  X H, Ge  W S. The new progress of mineralogical research on tourmaline group. China Non-metallic Mining Industry Herald, 2005, (1): 20–23
13 Xu W H, Lv  Y P, Zhao  G F, Xu  Z J, Wang  A J, Xiao  G Y. Tourmaline structure, properties and applications.  Materials Review, 2008, 3(2): 22–26
14 Dorney T D, Baraniuk  R G, Mittleman  D M. Material parameter estimation with terahertz time-domain spectroscopy. JOSA A, 2001, 18(7): 1562–1571
https://doi.org/10.1364/JOSAA.18.001562 pmid: 11444549
15 Duvillaret L, Garet  F, Coutaz J L. Highly precise determination of optical constants and sample thickness in terahertz time-domain spectroscopy. Applied Optics, 1999, 38(2): 409–415
https://doi.org/10.1364/AO.38.000409 pmid: 18305628
16 Bao R M, Zhao  K, Zhao H. Terahertz spectroscopic properties of rocks. Modern Scientific Instruments, 2013, (1): 115–117
[1] Qingsong LEI,Jiang LI. High conductive and transparent Al doped ZnO films for a-SiGe:H thin film solar cells[J]. Front. Optoelectron., 2015, 8(3): 298-305.
[2] Xiewei ZHONG,Shenxia TAN,Xiang WEN,Dan ZHU. Effect of light beam on measurements of reflectance and transmittance of turbid media with integrating sphere: Monte Carlo simulation[J]. Front. Optoelectron., 2015, 8(2): 203-211.
[3] Xiaofei LU,Xi-Cheng ZHANG. Investigation of ultra-broadband terahertz time-domain spectroscopy with terahertz wave gas photonics[J]. Front. Optoelectron., 2014, 7(2): 121-155.
[4] D. MUTHARASU, S. SHANMUGAN. Thermal resistance of high power LED on surface modified heat sink[J]. Front Optoelec, 2013, 6(2): 160-166.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed